Open Question: link between NonLocal Boxes and Communication Complexity?

Pierre Botteron ${ }^{* \dagger}$ (PhD student under A. Broadbent, I. Nechita and C. Pellegrini), Anne Broadbent ${ }^{\dagger}$, Marc-Olivier Proulx ${ }^{\dagger}$.

*University of Toulouse (France), †University of Ottawa (Canada).

1. CHSH game

Alice and Bob receive some bits $x, y \in\{0,1\}$, and they answer some bits $a, b \in\{0,1\}$ to the referee.

- Win at CHSH iff $a \oplus b=x \times y$.
- Win at CHSH ${ }^{\prime}$ iff $a \oplus b=(x \oplus 1) \times(y \oplus 1)$.

Depending on the type of the shared object, Alice and Bob can reach different wining probabilities

- Classical Strategy. $\max P\binom{$ win }{ cish }$=75 \%$.
\rightsquigarrow Shared object: shared randomness.
- Quantum Strategy. $\max \mathrm{P}\binom{$ win }{ chss }$=\frac{2+\sqrt{2}}{4} \approx 85 \%$. \leadsto Shared object: quantum states.
- Non-Signaling Strategy. $\max \mathrm{P}\binom{\mathrm{vin}}{$ cish }$=100 \%$. \leadsto Shared object: nonlocal boxes.

References

[1] S. Beigi and A. Gohari. Monotone measures for non-local correlations. IEEE
11] S. Beigi and A. Gohari. Monotone measures for non-Iocal correct.
Trunsactions on Information Theory, $61(9): 5185-5208,2015$
[2] P. Boteron, A. Broadbent, and M-O. Proulx. Extending the known region of nonlocal
boxes that ollapse communication complexity. arrXiv preprintar arXiv:2302. 00488 . 2023 [3] G. Brassard, H. Buhrman, N. Linden, A. A. Mêthot, A. Tapp, and F. Unger. Limit on
 (4) N. Brumner and P. Skrzypczz
[4] N. Brumner and P. Skrzypczyk. Nonlocality distillation and postquantum theories with
trivial communication complexity. Physical Review Letters, 102 (16) Apr 2009. (5] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum Entanglement and the Communication Complexity of the Inner Product Function. Springer Berlin
Heididlerg Rerlin Heideloerg ona Heidelberg, Berlin, Heidelberg, 1999
[6] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín. Almost quantum correlations, [7] W. van Dam. Nonlocality \& Communica

2. NonLocal Boxes

Def. A nonlocal box is formalized by a conditional probability distribution $\mathrm{P}(a, b \mid x, y)$.

Examples. • $\operatorname{PR}(a, b \mid x, y):=\left\{\begin{array}{cl}1 / 2 & \text { if } a \oplus b=x \times y \\ 0 & \text { otherwise. }\end{array}\right.$

- Shared Randomness: $\operatorname{SR}(a, b \mid x, y):= \begin{cases}1 / 2 & \text { if } a=b\end{cases}$
- Fully mixed box: $\mathrm{I}(a, b \mid x, y):=1 / 4$.

Non-signalling boxes. The set $\mathcal{N S}:=\{$ non-signaling boxes $\}$ is an 8 -dimensional convex set, containing $\mathcal{Q}:=\{$ quantum boxes $\}$.

3. Communication Complexity

Let $f:\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$. Assume Alice knows f and $X \in\{0,1\}^{n}$, and Bob knows f and $Y \in\{0,1\}^{m}$. Def. The communication complexity of f at (X, Y), denoted $\mathbf{C C}_{p}(f, X, Y)$, is the minimal number of communication bits between Alice and Bob so that Alice knows the value $f(X, Y)$ with probability $>p$. Def. A box P collapses communication complexity if it allows to compute any Boolean function with only one bit of communication and bounded error:

$$
\exists p>\frac{1}{2}, \forall f, \forall X, \forall Y, \mathbf{C C}_{p}(f, X, Y) \leq 1
$$

Intuition. It is strongly believed that such a collapsing box could not exist in Nature (it would be too powerful) $[7,3,4,1]$.

4. Open Question

Which nonlocal boxes collapse communication complexity?

5. Partial Answers

Historical Overview of Partial Answers. This overview is presented in the slice of $\mathcal{N S}$ passing through the boxes PR, SR and I, and we zoom in the top-right corner of the diagram. The open question consists in determining what portion of the blue area (the "post-quantum boxes") is collapsing, and what portion is not collapsing. In purple are drawn the known collapsing boxes, whereas in red are represented the known non-collapsing boxes.

6. Ideas of our proof [2] (2023)

The proof is a generalization of [3] (2006).
Notations. Let $\mathrm{P} \in \mathcal{N S}$ and consider

$$
\begin{aligned}
& \eta_{x y}:=-1+2 \sum_{c} \mathrm{P}(c, c \oplus x y \mid x, y) \\
& A:=\left(\eta_{00}+\eta_{01}+\eta_{10}+\eta_{11}\right)^{2} \\
& B:=2 \eta_{00}^{2}+4 \eta_{01} \eta_{10}+2 \eta_{11}^{2}
\end{aligned}
$$

| Theorem (Sufficient conditon). If the box P satis|fies $A+B>16$, then P is collapsing.
Idea of the proof. Let $f:\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$ a Boolean function known by both Alice and Bob, and let two strings $X \in\{0,1\}^{n}$ and $Y \in\{0,1\}^{m}$ known by Alice and Bob respectively. Alice and Bob share infinitely many copies of a certain nonlocal box P and infinitely many shared random bits.
If the condition $A+B>16$ is valid, then we exhibit a sequence of protocols $\left(\mathcal{P}_{k}\right)_{k}$ such that for each k, Alice is able to produce a bit a that equals $f(X, Y)$ with some probability $p_{k}>1 / 2$ using only 1 bit of communication. Moreover, we show that the sequence $\left(p_{k}\right)_{k}$ converges to some $p_{*}>1 / 2$:

$$
p_{k} \underset{k \rightarrow \infty}{\longrightarrow} p_{*}>1 / 2,
$$

and that p_{*} does not depend on f nor X nor Y (it only depends on P)
Hence, for any f, there exists a k large enough such that the protocol \mathcal{P}_{k} correctly computes $f(X, Y)$ with probability $p_{k}>\left(1+p_{*}\right) / 2>1 / 2$ and only 1 bit of communication, and as the constant $p:=\left(1+p_{*}\right) / 2$ is independent of f, X, Y, we indeed obtain that P collapses communication complexity by definition.

Examples of new collapsing regions (in black).

[^0]
[^0]: The question is still open today: there is still a blue gap to be filled!

