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Four interconnected domains

⋆ Quantum mechanics: physical framework
based on the notions of Hilbert space and pro-
jection operators.

⋆ Lattice theory: logical framework based on
the notions of ordered set and propositional sys-
tem.

⋆ Projective geometry: geometrical frame-
work based on the notions of points and lines.

⋆ Hypercompositional algebra: both lat-
tices and projective geometries can be inter-
preted in terms of structures with a multivalued
operation or hypercomposition.

A short (hi)story

In the 1930s, Garrett Birkhoff and John Von Neu-
mann proposed a non-classical logical system reflect-
ing the nature of quantum phenomena and called
quantum logic.

Between the 1960s and the 1970s, Joseph-Maria
Jauch and Constantin Piron continued the inves-
tigation developing an approach [1], which is still
studied nowadays.

Classical propositional logic Quantum propositional logic
≡ ≡

Boolean algebra Non-distributive lattice
≡ ≡

Random event structure Quantum event structure
≡ ≡

Classical probability Quantum probability

The original attempt of Von Neumann was to trans-
late the classical framework into a suitable quantum
framework. However, the translation cannot be done
trivially! At the end, Von Neumann chose to give up
Hilbert spaces as mathematical framework of quan-
tum mechanics!

I would like to make a confession which may seem immoral: I do
not believe absolutely in Hilbert space any more. After all Hilbert-
space (as far as quantum-mechanical things are concerned) was
obtained by generalizing Euclidean space, footing on the principle
of conserving the validity of all formal rules.

John von Neumann

The world of hyperstructures

A canonical hypergroup H has a hyperoperartion
⊞ : H2 → H which is associative, commutative,
has a neutral element 0, uniqueness of inverses and
reversibility. If x ⊞ x = {0, x} for all x ∈ H , then
H is called a K-vector space.
If on H \ {0} we have an abelian group law which
distributes over ⊞, then H is a hyperfield.

Example. K-vector space ↔ x ⊞ y = ℓ(x, y) \
{x, y}.
Projective geometry ↔ ℓ(x, y) = x ⊞ y ∪ {x, y}.

Example. For a modular lattice with a bottom el-
ement (L, ∨, ∧, ⊥) we have a canonical hypergroup
with

x⊞y := {z ∈ L | x∨y = x∨z = y∨z} and 0 = ⊥.

Projective spaces over local fields

For a local field F , the n-dimensional projective
space Pn

F has a canonical topology and corresponds
to a unique K-vector space Hn

F .

Distributive and abelian group laws on H \ {0} cor-
respond to incidence group structures on P.

If F is R or C, then the requirement that such a
group is topological restricts the possibilities to the
only case n = 1 and F = R.

In the non-archimedean case (Qp, Fp((t)),. . . ), we
are able to prove that there are finitely many pos-
sibilities up to isomorphism of topological groups if
char(F ) does not divide n + 1, and, in any case,
countably many [2].

The infinite-dimensional case is still under investi-
gation.

Big questions

Is it possible to define a hyperstructure associated to the lattice of closed subspace of a Hilbert space?
Can we use this new framework to describe quantum phenomena and quantum logic?

What about the probabilistic interpretation?

Back to quantum

The fundamental mathematical framework in quan-
tum mechanics is the Hilbert space. Its relation with
propositional systems is provided by the following
statement.

Theorem. Every irreducible propositional sys-
tem with dimension greater than or equal to four
is isomorphic to the lattice of all closed subspaces
of a Hilbert space constructed on some division
ring with involution.

The best way to work with the closed subspace is
to exploit the one-to-one correspondence between
closed subspaces and projector operators.

One can prove that the set P(H), of closed sub-
spaces of an Hilbert space H ordered by inclusion,
is actually a propositional system.

Promising links

•The analogy with the mathematical journey, which
led Von Neumann to introduce his algebras of
bounded operators on a Hilbert space seems to pro-
vide a genuine inductive support to the conjecture
of describing quantum phenomena allowing multi-
valued operations.

•Work on Quantum Gravity has revealed a connec-
tion between the category of manifolds and the cat-
egory of Hilbert spaces and linear operators. This
can be established via the concept of span, which
is also closely related to multivalued functions [3].

•The article of Connes and Consani [4] established
a fundamental connection between hyperstructures
and projective geometries that can be naturally ex-
tended to the lattices of quantum logic.

Future studies

We are investigating a hypercompositional approach
in quantum theories. The question whether a given
hypergroup admits a (skew) hyperfield structure is,
in the projective case, an algebraic formulation of
the problem of symmetries of the space which pre-
serve the incidence of lines with points. As a first
step, we have analyzed finite-dimensional case pro-
jective spaces over local fields. The following step
is to treat the infinite-dimensional case, especially
over R and C. Regarding the hypergroups associ-
ated to modular lattices, the problem of admissible
(skew) hyperfield structures suggests a concept of
symmetry in the quantum logical framework, pre-
serving some fundamental properties. We remark
that our approach becomes particularly natural once
one becomes familiar with multivalued operations
(or spans) and that the developments in general hy-
percompositional algebra may provide new and pow-
erful tools in the study of quantum structures.
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Here our manuscript! Here a nice non-distributive lattice!

p(0)

0

I

· · ·p(θ)p(θ′)


