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Einstein-Podolsky-Rosen (EPR) — a.k.a. steering
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Traditional bipartite setup!

Alice Bob
X
PAB

©/.

ng = tra {M,x ® I pas}

Classical common cause:

Alice Bob
X
O'B
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a

ol =25 p(A) p(alx, A)pX

If B does not admit of such classical model, then it is EPR non-classical

alx

1H. Wiseman, S. J. Jones, A. C. Doherty. Phys. Rev. Lett. 98, 140402 (2007)



Generalised EPR scenarios

Bob-with-Input: States o, Multipartite Bob-with-Input:
States 0,4, x50y

Measurement-Device-Independent: Channel ‘steering’:
POVM elements M, Quantum channels Z,,

YR

Assemblage: {0axy tay:  {Tamamlssoy fanaxoy:  {Mabjxtabx:  {Zajx}ax




Resource Theory I?

Scenario: traditional bipartite and multipartie EPR scenarios.

e Full set of available resources — Enveloping theory

Common-cause form, quantum

e Criteria to assert what can be done freely
Key feature: common cause among the wings

free = classical

e Free set of resources and free set of transformations
Processes whose common cause is classical
Local Operations and Shared Randomness (LOSR)

2B, Coecke, T. Fritz, R. Spekkens. Information and Computation 250, 59 (2016)



Free resources and transformations

Example: Traditional bipartite EPR scenarios

Free assemblage: Free Transformation:
! /
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Resource Theory Il

Scenario: Generalised scenarios — channel EPR scenarios

e Full set of available resources — Enveloping theory
Common-cause form, from any theory — non-signalling objects

see Paulo Cavalcanti’s talk

e Criteria to assert what can be done freely
Key feature: common cause among the wings

free = classical

e Free set of resources and free set of transformations
Processes whose common cause is classical
Local Operations and Shared Randomness (LOSR)



Free resources and transformations

Example: Channel EPR scenarios

Free assemblage: Free Transformation:
Zaj2(+) ()
a HB/ o
a 7-lBout
a HBoul
Hp
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Results

e Result 1: Resource conversion under free operations in all scenarios can be
evaluated with a single instance of a semidefinite program.
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e Result 1: Resource conversion under free operations in all scenarios can be
evaluated with a single instance of a semidefinite program.

Traditional scenarios: (quantum enveloping theory)

SDP 2. Sy "2 5,4
The assemblage 3y x can be converted into the assemblage Ek/le under LOSR operations,

denoted by Xy x LOSE EﬁMX” if and only if the following SDP is feasible:

given {{0a|a:}a}a: s {{‘dﬁz’}a’}z’ , {D(d'|a, Mnaae {D($‘zl7)‘)})\,z,z’
find {(W)\)Bp'}r

Wy =0,

trp {Wy} 5113 v,

Z)\ trg {Wa} = 11z,
Ty = T z“D(a'\a o/, \) D(ala', ) dp trg {W (I ®o‘a|z)} .

@)

LOSR
When the conversion is not possible, we denote it by Xpx #— EjMX"



Results

Generalised scenarios: (NS enveloping theory)

SDP 2. The channel assemblage Iy;x can be converted to the channel assemblage T, X under

LOSR operations, denoted by Iyx LOSE x> if and only if the following SDP is feasible:

given {Jap}as, {Jyetaw s {D]a,2', V}ra ae, {D(la’, MIrear
find {(Jex) BB BoweB 330 {(JPN) B }a

Jex>0 VA,

trg g, {Jex} oclp, .5, VA,

Eatre B {Jeal = W Ig,uB!

Jea>0 VA, -

trg,, {Jra} oc]IBr V/\,

Satrs, {Jra} = 72 G Ip: ,

trg  {Jea} = Jra ® d' Ip,. VA,
Jotj =22 LazD ’\a,z s A) D(@|2',X) Jgjz * Jea-

out!

©)

s.t.




Results

e Result 2 [traditional scenarios — quantum RT]: The pre-order of assemblages
contains an infinite number of incomparable assemblages.
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e Result 2 [traditional scenarios — quantum RT]: The pre-order of assemblages
contains an infinite number of incomparable assemblages.

Example: bipartite scenario

e Two-qubit system shared, state: |#) = cos(6) |00) + sin(0)|11).
e Alice’'s measurements: x =0 — Pauli-Z, x =1 — Pauli-X
Assemblage elements: ¢, = tra { M., ®1 |6) (0]}

Family of assemblages: {X? |6 € (0, %]}

Proof: family of monotones {M, | n € (0, 5]} such that:
0#n = My[E’] < My[27]

Hence: My = X" A X% M, = X% £ X"



e Result 3 [generalised scenarios — NS RT]: The pre-order is not a total order,
even for post-quantum resources.
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e Result 3 [generalised scenarios — NS RT]: The pre-order is not a total order,
even for post-quantum resources.

Bob-with-Input scenario: Hg =qubit, X = {0,1,2}, A ={0,1}, Y = {0,1}

zPTP { O_PTP}
AIXY alzy a€A, zeX, yeY ’

witn | ooy =& fora {(Mope ©15) 10) (01},
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Results

e Result 3 [generalised scenarios — NS RT]: The pre-order is not a total order,
even for post-quantum resources.

Bob-with-Input scenario: Hg =qubit, X = {0,1,2}, A ={0,1}, Y = {0,1}

zPTP { O_PTP}
AIXY alzy a€A, zeX, yeY ’

witn | ooy =& fora {(Mope ©15) 10) (01},
I+(— 1) oz , Ma|2 I+(— 1) oy , Ma|3 _ ]I+(—21) o

)

Ma|1

SPR__ { O_PR}
AIXY aley a€h, zeX,yeY ’

PR :{ la®ay) (a@ay| itz e {01}

with Gamy =1 1, ife=2.

ZPTP H ZPR and ZPTP §L ZPR



Comparison with other work

Traditional EPR scenario — multipartite:

Free assemblage: 0,4, x = 2.\ P(A) p(araz|xixaX) px

p(a1az|x1x2A) can be signalling!

Free operations: wirings and stochastic 1-way LOCC
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Traditional EPR scenario — multipartite:
Free assemblage: 0,4, x = 2.\ P(A) p(araz|xixaX) px

p(a1az|x1x2A) can be signalling!
Free operations: wirings and stochastic 1-way LOCC

Inconsistency: ‘“steering exposure”

free operation on free resource gives non-free assemblage

Need for a principled approach to ‘freeness’



Conclusions and outlook

e Traditional and generalised EPR scenarios
e Causal perspective on their ‘object of interest’ (assemblages)
e Causally-underpinned resource theory:
free = classical common cause (LOSR)

e (i) Traditional scenarios + quantum enveloping theory
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Diversity is a fact
Inclusion is an act
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