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Generalised EPR scenarios

Bob-with-Input: States σa|xy Multipartite Bob-with-Input:

States σa1a2|x1x2y

Measurement-Device-Independent:

POVM elements Mab|x

Channel ‘steering’:

Quantum channels Ia|x

Assemblage: {σa|xy}a,x,y , {σa1a2|x1x2y}a1,a2,x1,x2,y , {Mab|x}a,b,x , {Ia|x}a,x



Resource Theory I2

Scenario: traditional bipartite and multipartie EPR scenarios.

• Full set of available resources – Enveloping theory

Common-cause form, quantum

• Criteria to assert what can be done freely

Key feature: common cause among the wings

free ≡ classical

• Free set of resources and free set of transformations

Processes whose common cause is classical

Local Operations and Shared Randomness (LOSR)

2B. Coecke, T. Fritz, R. Spekkens. Information and Computation 250, 59 (2016)



Free resources and transformations

Example: Traditional bipartite EPR scenarios

Free assemblage: Free Transformation:



Resource Theory II

Scenario: Generalised scenarios – channel EPR scenarios

• Full set of available resources – Enveloping theory

Common-cause form, from any theory −→ non-signalling objects

see Paulo Cavalcanti’s talk

• Criteria to assert what can be done freely

Key feature: common cause among the wings

free ≡ classical

• Free set of resources and free set of transformations

Processes whose common cause is classical

Local Operations and Shared Randomness (LOSR)



Free resources and transformations

Example: Channel EPR scenarios

Free assemblage: Free Transformation:



Results

• Result 1: Resource conversion under free operations in all scenarios can be

evaluated with a single instance of a semidefinite program.

Traditional scenarios: (quantum enveloping theory)
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Results

Generalised scenarios: (NS enveloping theory)



Results

• Result 2 [traditional scenarios – quantum RT]: The pre-order of assemblages

contains an infinite number of incomparable assemblages.

Example: bipartite scenario

• Two-qubit system shared, state: |θ⟩ = cos(θ) |00⟩+ sin(θ) |11⟩.
• Alice’s measurements: x = 0 → Pauli-Z, x = 1 → Pauli-X

• Assemblage elements: σθ
a|x = trA

{
Ma|x ⊗ I |θ⟩ ⟨θ|

}
• Family of assemblages:

{
Σθ | θ ∈ (0, π

4
]
}

Proof: family of monotones
{
Mη | η ∈ (0, π

4
]
}
such that:

θ ̸= η ⇒ Mη[Σ
θ] < Mη[Σ

η]

Hence: Mθ ⇒ Ση ̸→ Σθ, Mη ⇒ Σθ ̸→ Ση
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Results

• Result 3 [generalised scenarios – NS RT]: The pre-order is not a total order,

even for post-quantum resources.

Bob-with-Input scenario: HB =qubit, X = {0, 1, 2}, A = {0, 1}, Y = {0, 1}

ΣPTP ̸−→ ΣPR and ΣPTP ̸←− ΣPR
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Comparison with other work

Traditional EPR scenario – multipartite:

Free assemblage: σa1a2|x1x2 =
∑

λ p(λ) p(a1a2|x1x2λ) ρλ

p(a1a2|x1x2λ) can be signalling!

Free operations: wirings and stochastic 1-way LOCC

Inconsistency: “steering exposure”

free operation on free resource gives non-free assemblage

Need for a principled approach to ‘freeness’
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Conclusions and outlook

• Traditional and generalised EPR scenarios

• Causal perspective on their ‘object of interest’ (assemblages)

• Causally-underpinned resource theory:

free = classical common cause (LOSR)

• (i) Traditional scenarios + quantum enveloping theory

(ii) Generalised scenarios + NS enveloping theory

• Resource conversion: tested by a single SDP

• Pre-order of resources: not a total order

• Free of ‘steering exposure’

• Relation to resource theories of incompatibility and entanglement

• Type-changing free operations: how do pre-orders relate?

• Monotones related to advantage in communication or information processing

tasks

• Quantify post-quantumness via an LOSE resource theory

Quantum 7, 926 (2023) and arXiv:2209.10177
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