Quantum Suplattices

Gejza Jenča, Bert Lindenhovius

Slovak University of Technology, Slovak Academy of Sciences

QPL 2023 July 17, 2023

Jenča, Lindenhovius (STU, SAS)

Quantum Suplattices

1/19

▲ 同 ▶ → 三 ▶

In the context of supremum-preserving functions as morphisms, complete lattices are called <u>suplattices</u>.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem.

In the context of supremum-preserving functions as morphisms, complete lattices are called suplattices.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem.

In the context of supremum-preserving functions as morphisms, complete lattices are called suplattices.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem.

In the context of supremum-preserving functions as morphisms, complete lattices are called suplattices.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem.

In the context of supremum-preserving functions as morphisms, complete lattices are called suplattices.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem.

In the context of supremum-preserving functions as morphisms, complete lattices are called suplattices.

- are obtained via a scheme called discrete quantization;
- are algebras for monads that are quantum versions of the power set monad and the lower set monad;
- are not generalizations of ordinary suplattices;
- satisfy usual theorems for ordinary suplattices such as the existence of Galois connections and the Knaster-Tarski Theorem.

• A program to obtain natural models of quantum structures;

- Main idea: algebras of operators on a Hilbert space *H* can be used to construct 'non-commutative' generalizations of classical structures;
- Example: X → C(X) yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- <u>Quantization</u> is the process of finding noncommutative versions of a mathematical structure.

(日) (四) (日) (日) (日)

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space *H* can be used to construct 'non-commutative' generalizations of classical structures;
- Example: X → C(X) yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- <u>Quantization</u> is the process of finding noncommutative versions of a mathematical structure.

< □ > < □ > < □ > < □ > < □ > < □ >

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space *H* can be used to construct 'non-commutative' generalizations of classical structures;
- Example: X → C(X) yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- <u>Quantization</u> is the process of finding noncommutative versions of a mathematical structure.

< □ > < □ > < □ > < □ > < □ > < □ >

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space *H* can be used to construct 'non-commutative' generalizations of classical structures;
- Example: X → C(X) yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- <u>Quantization</u> is the process of finding noncommutative versions of a mathematical structure.

- A program to obtain natural models of quantum structures;
- Main idea: algebras of operators on a Hilbert space *H* can be used to construct 'non-commutative' generalizations of classical structures;
- Example: X → C(X) yields a categorical duality between the categories of compact Hausdorff spaces and of commutative unital C*-algebras (Gelfand duality);
- Hence the dual of the category of unital C*-algebras can be regarded as the category of 'non-commutative' compact Hausdorff spaces.
- <u>Quantization</u> is the process of finding noncommutative versions of a mathematical structure.

• Duan, Severini, Winter: quantum graphs in quantum error correction;

- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

イロト イヨト イヨト イヨト

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

- Duan, Severini, Winter: quantum graphs in quantum error correction;
- Kuperberg and Weaver: quantization of metric spaces; quantum hamming metric in quantum error correction
- Weaver: identification of quantum relations as underlying structure of quantum metric spaces and quantum graphs;
- Weaver: quantum posets;
- Kornell: quantum sets and their categorical properties;
- Kornell, L., Mislove: categorical structure of quantum posets;
- Kornell, L., Mislove: quantum cpos and their application in the semantics of quantum programming languages.

• Topologies on sets are examples of suplattices

- There is no theory of noncommutative topological spaces beyond locally compact Hausdorff spaces;
- Several relevant topologies such as the Scott topology on a cpo are not locally compact or Hausdorff;
- Quantum suplattices might be a first step towards a theory of quantum topological spaces beyond locally compact Hausdorff spaces;
- Suplattices form an example of a *-autonomous category; such categories can be used for the semantics of classical multiplicative linear logic;
- We expect that also quantum suplattices form a *-autonomous category.

5/19

イロト イポト イヨト イヨト

- Topologies on sets are examples of suplattices
- There is no theory of noncommutative topological spaces beyond locally compact Hausdorff spaces;
- Several relevant topologies such as the Scott topology on a cpo are not locally compact or Hausdorff;
- Quantum suplattices might be a first step towards a theory of quantum topological spaces beyond locally compact Hausdorff spaces;
- Suplattices form an example of a *-autonomous category; such categories can be used for the semantics of classical multiplicative linear logic;
- We expect that also quantum suplattices form a *-autonomous category.

- Topologies on sets are examples of suplattices
- There is no theory of noncommutative topological spaces beyond locally compact Hausdorff spaces;
- Several relevant topologies such as the Scott topology on a cpo are not locally compact or Hausdorff;
- Quantum suplattices might be a first step towards a theory of quantum topological spaces beyond locally compact Hausdorff spaces;
- Suplattices form an example of a *-autonomous category; such categories can be used for the semantics of classical multiplicative linear logic;
- We expect that also quantum suplattices form a *-autonomous category.

- Topologies on sets are examples of suplattices
- There is no theory of noncommutative topological spaces beyond locally compact Hausdorff spaces;
- Several relevant topologies such as the Scott topology on a cpo are not locally compact or Hausdorff;
- Quantum suplattices might be a first step towards a theory of quantum topological spaces beyond locally compact Hausdorff spaces;
- Suplattices form an example of a *-autonomous category; such categories can be used for the semantics of classical multiplicative linear logic;
- We expect that also quantum suplattices form a *-autonomous category.

- Topologies on sets are examples of suplattices
- There is no theory of noncommutative topological spaces beyond locally compact Hausdorff spaces;
- Several relevant topologies such as the Scott topology on a cpo are not locally compact or Hausdorff;
- Quantum suplattices might be a first step towards a theory of quantum topological spaces beyond locally compact Hausdorff spaces;
- Suplattices form an example of a *-autonomous category; such categories can be used for the semantics of classical multiplicative linear logic;
- We expect that also quantum suplattices form a *-autonomous category.

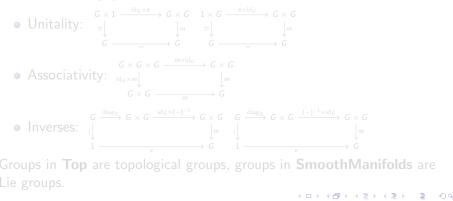
- Topologies on sets are examples of suplattices
- There is no theory of noncommutative topological spaces beyond locally compact Hausdorff spaces;
- Several relevant topologies such as the Scott topology on a cpo are not locally compact or Hausdorff;
- Quantum suplattices might be a first step towards a theory of quantum topological spaces beyond locally compact Hausdorff spaces;
- Suplattices form an example of a *-autonomous category; such categories can be used for the semantics of classical multiplicative linear logic;
- We expect that also quantum suplattices form a *-autonomous category.

< ロ > < 同 > < 回 > < 回 > < 回 > <

<u>Internalization</u> is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. Example: in any category with all finite products, a group *G* is an object equipped with morphisms $m : G \times G \to G$, $e : 1 \to G$, and $(-)^{-1} : G \to G$ such that:

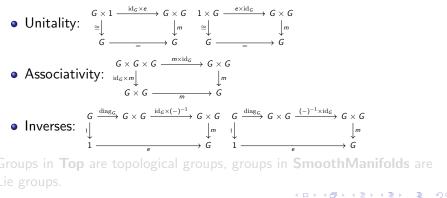
Jenča, Lindenhovius (STU, SAS)

Internalization is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. Example: in any category with all finite products, a group *G* is an object equipped with morphisms $m: G \times G \rightarrow G$, $e: 1 \rightarrow G$, and $(-)^{-1}: G \rightarrow G$ such that:



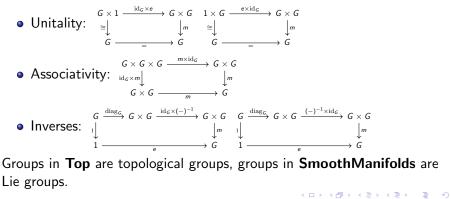
Jenča, Lindenhovius (STU, SAS)

Internalization is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. Example: in any category with all finite products, a group *G* is an object equipped with morphisms $m: G \times G \rightarrow G$, $e: 1 \rightarrow G$, and $(-)^{-1}: G \rightarrow G$ such that:



Jenča, Lindenhovius (STU, SAS)

Internalization is the process of generalizing set-theoretic constructions that can be defined in terms of the categorical structure of **Set** or **Rel** to other categories that posses the same categorical structure needed for these constructions. Example: in any category with all finite products, a group *G* is an object equipped with morphisms $m: G \times G \rightarrow G$, $e: 1 \rightarrow G$, and $(-)^{-1}: G \rightarrow G$ such that:



Jenča, Lindenhovius (STU, SAS)

QPL 2023

6/19

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling **Rel**, whereas binary relations cannot always be internalized in a category resembling **Set**;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category **Rel**;
- The dual of the category **WStar** of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations.

イロト イボト イヨト イヨト

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling **Rel**, whereas binary relations cannot always be internalized in a category resembling **Set**;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category **Rel**;
- The dual of the category **WStar** of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations.

イロト イポト イヨト イヨト

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling **Rel**, whereas binary relations cannot always be internalized in a category resembling **Set**;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category **Rel**;
- The dual of the category **WStar** of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations.

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling **Rel**, whereas binary relations cannot always be internalized in a category resembling **Set**;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category **Rel**;
- The dual of the category **WStar** of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations.

- We employ a method of quantization by internalizing structures in a suitable category of C*-algebras whose objects are noncommutative generalizations of sets;
- In general, one can internalize functions in a category resembling **Rel**, whereas binary relations cannot always be internalized in a category resembling **Set**;
- Therefore, our category of operator algebras should be a noncommutative generalization of the category **Rel**;
- The dual of the category **WStar** of von Neumann algebras can be regarded the category of 'non-commutative' measure spaces.
- Weaver: quantum relations between von Neumann algebras are certain operator spaces generalizing measurable binary relations.

Hereditarily atomic von Neumann algebras

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to $\bigoplus_{i \in I} L(H_i)$ with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category **WRel** of von Neumann algebras and quantum relations is a <u>quantaloid</u> (**Sup**-enriched category) with a dagger;
- Its full subcategory **WReI**_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid just like **ReI**.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in *V*-**Rel** for a quantale *V* such as [0, 1];
- $WRel_{HA}$ is equivalent to a category qRel that can be described in terms of Hilbert spaces.

э

Hereditarily atomic von Neumann algebras

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to ⊕_{i∈I} L(H_i) with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a <u>quantaloid</u> (Sup-enriched category) with a dagger;
- Its full subcategory **WReI**_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid just like **ReI**.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in *V*-**Rel** for a quantale *V* such as [0, 1];
- $WRel_{HA}$ is equivalent to a category **qRel** that can be described in terms of Hilbert spaces.

э

(日)

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to ⊕_{i∈I} L(H_i) with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a quantaloid (Sup-enriched category) with a dagger;
- Its full subcategory **WReI**_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid just like **ReI**.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in *V*-**Rel** for a quantale *V* such as [0, 1];
- $WRel_{HA}$ is equivalent to a category **qRel** that can be described in terms of Hilbert spaces.

3

(日)

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to ⊕_{i∈I} L(H_i) with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a <u>quantaloid</u> (Sup-enriched category) with a dagger;
- Its full subcategory **WReI**_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid just like **ReI**.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in *V*-**Rel** for a quantale *V* such as [0, 1];
- $WRel_{HA}$ is equivalent to a category **qRel** that can be described in terms of Hilbert spaces.

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to ⊕_{i∈I} L(H_i) with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a <u>quantaloid</u> (Sup-enriched category) with a dagger;
- Its full subcategory **WReI**_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid just like **ReI**.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in *V*-**Rel** for a quantale *V* such as [0, 1];
- $WRel_{HA}$ is equivalent to a category **qRel** that can be described in terms of Hilbert spaces.

- Hereditarily atomic von Neumann algebras are von Neumann algebras isomorphic to ⊕_{i∈I} L(H_i) with H_i a finite-dimensional Hilbert space, and can be used as non-commutative generalizations of sets;
- The category WRel of von Neumann algebras and quantum relations is a <u>quantaloid</u> (Sup-enriched category) with a dagger;
- Its full subcategory **WReI**_{HA} of hereditarily atomic von Neumann algebras is a dagger compact quantaloid just like **ReI**.
- <u>Discrete quantization</u> is the process of internalizing mathematical structures in **WRel**_{HA};
- Compare: fuzzification can be regarded as internalizing structures in *V*-**Rel** for a quantale *V* such as [0,1];
- $WRel_{HA}$ is equivalent to a category **qRel** that can be described in terms of Hilbert spaces.

Definition

- A <u>quantum set</u> X is a family of finite-dimensional Hilbert spaces called atoms of X;
- A binary relation R : X → Y is a function assigning to each atom X of X and each atom Y of Y a subspace R(X, Y) of the space L(X, Y) of linear maps X → Y.

A binary relation R from $\mathcal{X} = \{X_1, \ldots, X_n\}$ to $\mathcal{Y} = \{Y_1, \ldots, Y_m\}$ can be represented in matrix form:

$$R = \begin{bmatrix} R(X_1, Y_1) & R(X_2, Y_1) & \cdots & R(X_n, Y_1) \\ R(X_1, Y_2) & R(X_2, Y_2) & \cdots & R(X_n, Y_2) \\ \vdots & \vdots & \ddots & \vdots \\ R(X_1, Y_m) & R(X_2, Y_n) & \cdots & R(X_n, Y_m) \end{bmatrix}$$

We compose binary relations by 'matrix multiplication'.

イロト イヨト イヨト ・

Definition

- A <u>quantum set</u> X is a family of finite-dimensional Hilbert spaces called <u>atoms</u> of X;
- A binary relation R : X → Y is a function assigning to each atom X of X and each atom Y of Y a subspace R(X, Y) of the space L(X, Y) of linear maps X → Y.

A binary relation R from $\mathcal{X} = \{X_1, \ldots, X_n\}$ to $\mathcal{Y} = \{Y_1, \ldots, Y_m\}$ can be represented in matrix form:

$$R = \begin{bmatrix} R(X_1, Y_1) & R(X_2, Y_1) & \cdots & R(X_n, Y_1) \\ R(X_1, Y_2) & R(X_2, Y_2) & \cdots & R(X_n, Y_2) \\ \vdots & \vdots & \ddots & \vdots \\ R(X_1, Y_m) & R(X_2, Y_n) & \cdots & R(X_n, Y_m) \end{bmatrix}$$

We compose binary relations by 'matrix multiplication'.

< < >>

- Any quantum set X corresponds to a hereditarily atomic von Neumann algebra ⊕_{X∈X} L(X) that is unique up to isomorphism;
- The identity relation I_X on X is the 'diagonal' matrix with diagonal elements I_X(X, X) = C1_X;
- Binary relations on quantum sets were introduced by Kornell¹, but are essentially Weaver's quantum relations on von Neumann algebras²;
- The category **qRel** of quantum sets and binary relations is dagger-compact;
- The inclusion relation between subspaces induces an order \leq on binary relations between ${\mathcal X}$ and ${\mathcal Y}$ such that **qRel** becomes a quantaloid;
- We have a fully faithful functor '(−) : Rel → qRel preserving the dagger structure and the order between relations.

²N. Weaver, *Quantum relations*, Mem. Amer. Math. Soc.→215 (2012). (3) 3 0 0

Jenča, Lindenhovius (STU, SAS)

¹A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

- Any quantum set X corresponds to a hereditarily atomic von Neumann algebra ⊕_{X∈X} L(X) that is unique up to isomorphism;
- The identity relation I_X on X is the 'diagonal' matrix with diagonal elements I_X(X, X) = Cl_X;
- Binary relations on quantum sets were introduced by Kornell¹, but are essentially Weaver's quantum relations on von Neumann algebras²;
- The category **qRel** of quantum sets and binary relations is dagger-compact;
- The inclusion relation between subspaces induces an order \leq on binary relations between \mathcal{X} and \mathcal{Y} such that **qRel** becomes a quantaloid;
- We have a fully faithful functor '(−) : Rel → qRel preserving the dagger structure and the order between relations.

Jenča, Lindenhovius (STU, SAS)

¹A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

²N. Weaver, *Quantum relations*, Mem. Amer. Math. Soc.→215 (2012). (3) 3 3 0 0 0

- Any quantum set X corresponds to a hereditarily atomic von Neumann algebra ⊕_{X∈X} L(X) that is unique up to isomorphism;
- The identity relation I_X on X is the 'diagonal' matrix with diagonal elements I_X(X, X) = Cl_X;
- Binary relations on quantum sets were introduced by Kornell¹, but are essentially Weaver's quantum relations on von Neumann algebras²;
- The category **qRel** of quantum sets and binary relations is dagger-compact;
- The inclusion relation between subspaces induces an order \leq on binary relations between \mathcal{X} and \mathcal{Y} such that **qRel** becomes a quantaloid;
- We have a fully faithful functor '(−) : Rel → qRel preserving the dagger structure and the order between relations.

Jenča, Lindenhovius (STU, SAS)

¹A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

²N. Weaver, *Quantum relations*, Mem. Amer. Math. Soc. **215** (2012).

- Any quantum set X corresponds to a hereditarily atomic von Neumann algebra ⊕_{X∈X} L(X) that is unique up to isomorphism;
- The identity relation I_X on X is the 'diagonal' matrix with diagonal elements I_X(X, X) = Cl_X;
- Binary relations on quantum sets were introduced by Kornell¹, but are essentially Weaver's quantum relations on von Neumann algebras²;
- The category **qRel** of quantum sets and binary relations is dagger-compact;
- The inclusion relation between subspaces induces an order \leq on binary relations between \mathcal{X} and \mathcal{Y} such that **qRel** becomes a quantaloid;
- We have a fully faithful functor '(−) : Rel → qRel preserving the dagger structure and the order between relations.

Jenča, Lindenhovius (STU, SAS)

¹A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

²N. Weaver, *Quantum relations*, Mem. Amer. Math. Soc. **215** (2012). Be Soc.

- Any quantum set X corresponds to a hereditarily atomic von Neumann algebra ⊕_{X∈X} L(X) that is unique up to isomorphism;
- The identity relation I_X on X is the 'diagonal' matrix with diagonal elements I_X(X, X) = Cl_X;
- Binary relations on quantum sets were introduced by Kornell¹, but are essentially Weaver's quantum relations on von Neumann algebras²;
- The category **qRel** of quantum sets and binary relations is dagger-compact;
- The inclusion relation between subspaces induces an order \leq on binary relations between \mathcal{X} and \mathcal{Y} such that **qRel** becomes a quantaloid;
- We have a fully faithful functor '(−) : Rel → qRel preserving the dagger structure and the order between relations.

Jenča, Lindenhovius (STU, SAS)

¹A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

²N. Weaver, *Quantum relations*, Mem. Amer. Math. Soc. **215** (2012).

- Any quantum set X corresponds to a hereditarily atomic von Neumann algebra ⊕_{X∈X} L(X) that is unique up to isomorphism;
- The identity relation I_X on X is the 'diagonal' matrix with diagonal elements I_X(X, X) = Cl_X;
- Binary relations on quantum sets were introduced by Kornell¹, but are essentially Weaver's quantum relations on von Neumann algebras²;
- The category **qRel** of quantum sets and binary relations is dagger-compact;
- The inclusion relation between subspaces induces an order \leq on binary relations between \mathcal{X} and \mathcal{Y} such that **qRel** becomes a quantaloid;
- We have a fully faithful functor '(−): Rel → qRel preserving the dagger structure and the order between relations.

Jenča, Lindenhovius (STU, SAS)

¹A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020)

²N. Weaver, *Quantum relations*, Mem. Amer. Math. Soc. **215** (2012). Be Soc.

A morphism $f : X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \ge 1_X$ and $f \circ f^{\dagger} \le 1_Y$.

Definition

A function $F : \mathcal{X} \to \mathcal{Y}$ between quantum sets is a relation satisfying $F^{\dagger} \circ F \ge I_{\mathcal{X}}$ and $F \circ F^{\dagger} \le I_{\mathcal{Y}}$. The category of quantum sets and functions is denoted by **qSet**.

- qSet is complete, cocomplete and symmetric monoidal closed³;
- The assignment X → l[∞](X) := ⊕_{X∈X} L(X) extends to a duality between qSet and the category WStar_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;
- '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$.

Kornell. Quantum sets. J. Math. Phys. 61 (2020) 🗸 🖬 🕨 🗸 🚍 🗸 🧃

A morphism $f: X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f > 1_X$ and $f \circ f^{\dagger} < 1_{\mathbf{V}}.$

Definition

A function $F: \mathcal{X} \to \mathcal{Y}$ between quantum sets is a relation satisfying $F^{\dagger} \circ F \geq I_{\mathcal{X}}$ and $F \circ F^{\dagger} \leq I_{\mathcal{Y}}$. The category of quantum sets and functions is denoted by **gSet**.

A morphism $f : X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \ge 1_X$ and $f \circ f^{\dagger} \le 1_Y$.

Definition

A function $F : \mathcal{X} \to \mathcal{Y}$ between quantum sets is a relation satisfying $F^{\dagger} \circ F \geq I_{\mathcal{X}}$ and $F \circ F^{\dagger} \leq I_{\mathcal{Y}}$. The category of quantum sets and functions is denoted by **qSet**.

• **qSet** is complete, cocomplete and symmetric monoidal closed³;

The assignment X → l[∞](X) := ⊕_{X∈X} L(X) extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;

• '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$.

³A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020) (D) (D) (D) (D)

A morphism $f : X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \ge 1_X$ and $f \circ f^{\dagger} \le 1_Y$.

Definition

A function $F : \mathcal{X} \to \mathcal{Y}$ between quantum sets is a relation satisfying $F^{\dagger} \circ F \geq I_{\mathcal{X}}$ and $F \circ F^{\dagger} \leq I_{\mathcal{Y}}$. The category of quantum sets and functions is denoted by **qSet**.

- **qSet** is complete, cocomplete and symmetric monoidal closed³;
- The assignment $\mathcal{X} \mapsto \ell^{\infty}(\mathcal{X}) := \bigoplus_{X \in \mathcal{X}} L(X)$ extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;
- '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$.

³A. Kornell, *Quantum sets*, J. Math. Phys. 61 (2020) < --> < --> < --> < --> < --> =

A morphism $f : X \to Y$ in **Rel** is a function if and only if $f^{\dagger} \circ f \ge 1_X$ and $f \circ f^{\dagger} \le 1_Y$.

Definition

A function $F : \mathcal{X} \to \mathcal{Y}$ between quantum sets is a relation satisfying $F^{\dagger} \circ F \geq I_{\mathcal{X}}$ and $F \circ F^{\dagger} \leq I_{\mathcal{Y}}$. The category of quantum sets and functions is denoted by **qSet**.

- **qSet** is complete, cocomplete and symmetric monoidal closed³;
- The assignment X → l[∞](X) := ⊕_{X∈X} L(X) extends to a duality between **qSet** and the category **WStar**_{HA} of hereditarily atomic von Neumann algebras and normal unital *-homomorphisms;
- '(-) restricts to a fully faithful functor $\mathbf{Set} \to \mathbf{qSet}$.

Quantum posets

Definition

• An preorder on a quantum set ${\mathcal X}$ is a binary relation $\preccurlyeq:{\mathcal X}\to{\mathcal X}$ such that

(1)
$$I_{\mathcal{X}} \leq \preccurlyeq$$
 (reflexivity);

(2)
$$\preccurlyeq \circ \preccurlyeq \leq \preccurlyeq$$
 (transitivity).

- The opposite $\succcurlyeq := \preccurlyeq^{\dagger}$ of a preorder is a preorder.
- A preorder \preccurlyeq on \mathcal{X} is called an order if

(3) $\preccurlyeq \land \succcurlyeq \leq I_{\mathcal{X}}$ (antisymmetry)

• A function $F : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ is monotone if $F \circ \preccurlyeq_{\mathcal{X}} \leq \preccurlyeq_{\mathcal{Y}} \circ F$

Example

Let \mathcal{H}_2 be the quantum set whose single atom is the two-dimensional Hilbert space H_2 . Then $(\mathcal{H}_2, \preccurlyeq)$ is a quantum poset for

$$\preccurlyeq (H_2, H_2) := \mathbb{C} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \mathbb{C} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Quantum posets

Definition

• An preorder on a quantum set ${\mathcal X}$ is a binary relation $\preccurlyeq:{\mathcal X}\to{\mathcal X}$ such that

(1)
$$I_{\mathcal{X}} \leq \preccurlyeq$$
 (reflexivity);

(2)
$$\preccurlyeq \circ \preccurlyeq \leq \preccurlyeq$$
 (transitivity).

- The opposite $\succcurlyeq := \preccurlyeq^{\dagger}$ of a preorder is a preorder.
- A preorder \preccurlyeq on \mathcal{X} is called an order if

(3) $\preccurlyeq \land \succcurlyeq \leq I_{\mathcal{X}}$ (antisymmetry)

• A function $F : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ is monotone if $F \circ \preccurlyeq_{\mathcal{X}} \leq \preccurlyeq_{\mathcal{Y}} \circ F$

Example

Let \mathcal{H}_2 be the quantum set whose single atom is the two-dimensional Hilbert space H_2 . Then $(\mathcal{H}_2, \preccurlyeq)$ is a quantum poset for

$$\preccurlyeq$$
 $(H_2, H_2) := \mathbb{C} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \mathbb{C} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X), x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation r : X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding Pos → RelPos has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding X → D(X), x ↦↓x.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \rightarrow D(X), x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation r : X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding Pos → RelPos has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding X → D(X), x ↦↓x.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X), x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation r : X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding Pos → RelPos has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding X → D(X), x ↦↓ x.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X), x \mapsto \downarrow x$ has a lower Galois adjoint $\backslash /$.

Definition

- Any monotone relation r : X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category RelPos of posets and monotone relations is compact closed.
- The embedding Pos → RelPos has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding X → D(X), x ↦↓x.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X), x \mapsto \downarrow x$ has a lower Galois adjoint $\backslash /$.

Definition

- Any monotone relation r : X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category **RelPos** of posets and monotone relations is compact closed.
- The embedding Pos → RelPos has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding X → D(X), x ↦↓ x.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X), x \mapsto \downarrow x$ has a lower Galois adjoint $\backslash /$.

Definition

A monotone relation $r: X \to Y$ between posets is a binary relation such that $(x_1, y_1) \in r$ implies $(x_2, y_2) \in r$ for each $x_1 \leq x_2$ in X and each $y_1 \geq y_2$ in Y.

- Any monotone relation r : X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category **RelPos** of posets and monotone relations is compact closed.

The embedding Pos → RelPos has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding X → D(X), x ↦↓ x.

- (1) Suplattices are the algebras of the lower set monad D on **Pos**;
- (2) Suplattices are posets X such that the canonical embedding $X \to D(X), x \mapsto \downarrow x$ has a lower Galois adjoint \bigvee .

Definition

- Any monotone relation r : X → Y corresponds to a monotone function X^{op} × Y → 2, so to a 2-enriched profunctor when X and Y are regarded as 2-enriched categories;
- The category **RelPos** of posets and monotone relations is compact closed.
- The embedding Pos → RelPos has a right adjoint; the induced monad on Pos is the lower set monad D. The unit of the adjunction is the embedding X → D(X), x ↦↓ x.

Definition

A monotone relation $R : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R : \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding **qPos** \rightarrow **qRelPos** has a right adjoint; its induced monad D is called the quantum lower set monad.

The existence of right adjoints of embeddings Pos → RelPos,
 Rel → Set, qRel → qSet and qPos → qRelPos can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category R;

All these embeddings are examples of proarrow equipments =,

Definition

A monotone relation $R : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R : \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding **qPos** \rightarrow **qRelPos** has a right adjoint; its induced monad D is called the quantum lower set monad.

 The existence of right adjoints of embeddings Pos → RelPos, Rel → Set, qRel → qSet and qPos → qRelPos can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category R;
 All these embeddings are examples of proarrow equipments = , = →

Jenča, Lindenhovius (STU, SAS)

Definition

A monotone relation $R : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R : \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding $qPos \rightarrow qRelPos$ has a right adjoint; its induced monad D is called the quantum lower set monad.

Definition

A monotone relation $R : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R : \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding $qPos \rightarrow qRelPos$ has a right adjoint; its induced monad D is called the quantum lower set monad.

• The existence of right adjoints of embeddings $Pos \rightarrow RelPos$, $Rel \rightarrow Set, \, qRel \rightarrow qSet$ and $qPos \rightarrow qRelPos$ can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category R;

• All these embeddings are examples of proarrow equipments z, z, z

Definition

A monotone relation $R : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum posets is a binary relation $R : \mathcal{X} \to \mathcal{Y}$ such that $\succcurlyeq_{\mathcal{Y}} \circ R \leq R$ and $R \circ \succcurlyeq_{\mathcal{X}} \leq R$.

Theorem

The category **qRelPos** of quantum posets and monotone relations is compact closed.

Theorem

The embedding $qPos \rightarrow qRelPos$ has a right adjoint; its induced monad D is called the quantum lower set monad.

- The existence of right adjoints of embeddings Pos \rightarrow RelPos, Rel \rightarrow Set, qRel \rightarrow qSet and qPos \rightarrow qRelPos can all be proven in one scheme involving the embedding of a symmetric monoidal closed category S into a compact closed category R;
- All these embeddings are examples of proarrow equipments.

Jenča, Lindenhovius (STU, SAS)

Galois connections between quantum posets

Definition

The <u>pointwise order</u> $\sqsubseteq_{\mathcal{Y}}$ of functions $F, G : \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} is a quantum set and \mathcal{Y} is a quantum poset ordered by \preccurlyeq is defined by $F \sqsubseteq_{\mathcal{Y}} G$ if and only if $F \leq \succcurlyeq \circ G$.

Definition

A Galois connection between quantum posets $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ and $(\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ consists of a pair of monotone maps $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{Y} \to \mathcal{X}$ such that

$$I_{\mathcal{X}} \sqsubseteq_{\mathcal{X}} G \circ F, \qquad F \circ G \sqsubseteq_{\mathcal{Y}} I_{\mathcal{Y}}.$$

F is called the lower Galois adjoint of G.

Galois connections between quantum posets

Definition

The <u>pointwise order</u> $\sqsubseteq_{\mathcal{Y}}$ of functions $F, G : \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} is a quantum set and \mathcal{Y} is a quantum poset ordered by \preccurlyeq is defined by $F \sqsubseteq_{\mathcal{Y}} G$ if and only if $F \leq \succcurlyeq \circ G$.

Definition

A Galois connection between quantum posets $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ and $(\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ consists of a pair of monotone maps $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{Y} \to \mathcal{X}$ such that

$$I_{\mathcal{X}} \sqsubseteq_{\mathcal{X}} G \circ F, \qquad F \circ G \sqsubseteq_{\mathcal{Y}} I_{\mathcal{Y}}.$$

F is called the lower Galois adjoint of G.

Quantum suplattices

The unit of the **qPos**/**qRelPos** adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to D(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let \mathcal{X} be a quantum poset. Then $\mathcal{D}(\mathcal{X})$ is a quantum suplattice where $\bigvee_{\mathcal{D}(\mathcal{X})}$ is the multiplication $\mathcal{D}^2(\mathcal{X}) \to \mathcal{D}(\mathcal{X})$.

Theorem

qSup is equivalent to the Eilenberg-Moore category of \mathcal{D} .

Jenča, Lindenhovius (STU, SAS)

Quantum suplattices

The unit of the **qPos**/**qRelPos** adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to D(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let \mathcal{X} be a quantum poset. Then $\mathcal{D}(\mathcal{X})$ is a quantum suplattice where $\bigvee_{\mathcal{D}(\mathcal{X})}$ is the multiplication $\mathcal{D}^2(\mathcal{X}) \to \mathcal{D}(\mathcal{X})$.

Theorem

qSup is equivalent to the Eilenberg-Moore category of \mathcal{D} .

Jenča, Lindenhovius (STU, SAS)

Quantum suplattices

The unit of the **qPos**/**qRelPos** adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to D(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let \mathcal{X} be a quantum poset. Then $\mathcal{D}(\mathcal{X})$ is a quantum suplattice where $\bigvee_{\mathcal{D}(\mathcal{X})}$ is the multiplication $\mathcal{D}^2(\mathcal{X}) \to \mathcal{D}(\mathcal{X})$.

Theorem

qSup is equivalent to the Eilenberg-Moore category of \mathcal{D} .

Jenča, Lindenhovius (STU, SAS)

Quantum suplattices

The unit of the **qPos**/**qRelPos** adjunction yields a canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$; a quantum generalization of the order embedding $X \to D(X)$, $x \mapsto \downarrow x$ for ordinary posets X.

Definition

A quantum poset $(\mathcal{X}, \preccurlyeq_{\mathcal{X}})$ is called a <u>quantum suplattice</u> if the canonical order embedding $\mathcal{X} \to \mathcal{D}(\mathcal{X})$ has a lower Galois adjoint $\bigvee_{\mathcal{X}}$. A monotone map $F : (\mathcal{X}, \preccurlyeq_{\mathcal{X}}) \to (\mathcal{Y}, \preccurlyeq_{\mathcal{Y}})$ between quantum suplattices is called a <u>sup-homomorphism</u> if $F \circ \bigvee_{\mathcal{X}} = \bigvee_{\mathcal{Y}} \circ \mathcal{D}(F)$. The category of quantum suplattices and sup-homomorphisms is denoted by **qSup**.

Example

Let \mathcal{X} be a quantum poset. Then $\mathcal{D}(\mathcal{X})$ is a quantum suplattice where $\bigvee_{\mathcal{D}(\mathcal{X})}$ is the multiplication $\mathcal{D}^2(\mathcal{X}) \to \mathcal{D}(\mathcal{X})$.

Theorem

qSup is equivalent to the Eilenberg-Moore category of \mathcal{D} .

Jenča, Lindenhovius (STU, SAS)

Quantum Suplattices

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor **Sup** \rightarrow **qSup**.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D('X);
- The image of this embedding are the one-dimensional atoms of D('X), i.e., its classical part of D('X).
- However, D('X) has also higher-dimensional atoms.

Conjecture

Let (X, \sqsubseteq) be a complete linearly ordered lattice. Then $(X, '\sqsubseteq)$ is a weak quantum suplattice, hence a quantum suplattice.

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor **Sup** \rightarrow **qSup**.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D('X);

 The image of this embedding are the one-dimensional atoms of *D*('X), i.e., its classical part of *D*('X).

However, D('X) has also higher-dimensional atoms.

Conjecture

Let (X, \sqsubseteq) be a complete linearly ordered lattice. Then $(X, '\sqsubseteq)$ is a weak quantum suplattice, hence a quantum suplattice.

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor **Sup** \rightarrow **qSup**.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into D('X);
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}(X)$, i.e., its classical part of $\mathcal{D}(X)$.
- However, $\mathcal{D}(X)$ has also higher-dimensional atoms.

Conjecture

Let (X, \sqsubseteq) be a complete linearly ordered lattice. Then $(X, '\sqsubseteq)$ is a weak quantum suplattice, hence a quantum suplattice.

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor **Sup** \rightarrow **qSup**.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into $\mathcal{D}(X)$;
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}(X)$, i.e., its classical part of $\mathcal{D}(X)$.
- However, $\mathcal{D}(X)$ has also higher-dimensional atoms.

Conjecture

Let (X, \sqsubseteq) be a complete linearly ordered lattice. Then $(X, '\sqsubseteq)$ is a weak quantum suplattice, hence a quantum suplattice.

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor **Sup** \rightarrow **qSup**.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into $\mathcal{D}(X)$;
- The image of this embedding are the one-dimensional atoms of D('X), i.e., its classical part of D('X).
- However, $\mathcal{D}(X)$ has also higher-dimensional atoms.

Conjecture

Let (X, \sqsubseteq) be a complete linearly ordered lattice. Then $(X, '\sqsubseteq)$ is a weak quantum suplattice, hence a quantum suplattice.

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor **Sup** \rightarrow **qSup**.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into $\mathcal{D}(X)$;
- The image of this embedding are the one-dimensional atoms of D('X), i.e., its classical part of D('X).
- However, $\mathcal{D}(X)$ has also higher-dimensional atoms.

Conjecture

Let (X, \sqsubseteq) be a complete linearly ordered lattice. Then $(X, '\sqsubseteq)$ is a weak quantum suplattice, hence a quantum suplattice.

Proposition

The fully faithful functor (-): **Pos** \rightarrow **qPos** does not restrict and corestrict to a functor **Sup** \rightarrow **qSup**.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

- If X is a poset with poset D(X) of lower sets, then 'X is a quantum poset, and 'D(X) is a quantum poset which embeds into $\mathcal{D}(X)$;
- The image of this embedding are the one-dimensional atoms of $\mathcal{D}(X)$, i.e., its classical part of $\mathcal{D}(X)$.
- However, $\mathcal{D}(X)$ has also higher-dimensional atoms.

Conjecture

Let (X, \sqsubseteq) be a complete linearly ordered lattice. Then $(`X, `\sqsubseteq)$ is a weak quantum suplattice, hence a quantum suplattice.

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F : \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}} : \mathcal{Y} \to \mathcal{X}$ is called a subset of fixpoints if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$. Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F : \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then *F* is a sup-homomorphism if and only if *F* is a lower Galois adjoint.

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}} : \mathcal{Y} \to \mathcal{X}$ is called a subset of fixpoints if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$. Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F : \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then *F* is a sup-homomorphism if and only if *F* is a lower Galois adjoint.

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}} : \mathcal{Y} \to \mathcal{X}$ is called a subset of fixpoints if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Theorem

The opposite $(\mathcal{X}, \succcurlyeq)$ of a quantum suplattice $(\mathcal{X}, \preccurlyeq)$ is a quantum suplattice.

Theorem

Let $F : \mathcal{X} \to \mathcal{Y}$ be a monotone map between quantum suplattices. Then *F* is a sup-homomorphism if and only if *F* is a lower Galois adjoint.

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum poset \mathcal{X} . A subset $\mathcal{Y} \subseteq \mathcal{X}$ with canonical embedding $J_{\mathcal{Y}} : \mathcal{Y} \to \mathcal{X}$ is called a <u>subset of</u> <u>fixpoints</u> if $F \circ J_{\mathcal{Y}} = J_{\mathcal{Y}}$.

Theorem (Quantum Knaster-Tarski)

Let $F : \mathcal{X} \to \mathcal{X}$ be a monotone endomap on a quantum suplattice $(\mathcal{X}, \preccurlyeq)$. Then the largest subset of fixpoints \mathcal{Y} of \mathcal{X} exists and is a quantum suplattice in its relative order $J_{\mathcal{Y}}^{\dagger} \circ \preccurlyeq \circ J_{\mathcal{Y}}$.

Conjecture (Quantum Cantor-Schröder-Bernstein)

Let $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{Y} \to \mathcal{X}$ be injective functions between quantum sets \mathcal{X} and \mathcal{Y} . Then there is a bijection $\mathcal{X} \cong \mathcal{Y}$.

In terms of operator algebras, this translates to

Conjecture

Let $f : M \to N$ and $g : N \to M$ be surjective normal unital *-homomorphisms between hereditarily atomic von Neumann algebras M and N. Then there is a *-isomorphism $M \to N$.

Probably we need:

Conjecture

Let \mathcal{X} and \mathcal{Y} be quantum posets for which there is an order isomorphism $\mathcal{D}(\mathcal{X}) \to \mathcal{D}(\mathcal{Y})$. Then there is an order isomorphism $\mathcal{X} \to \mathcal{Y}$.

Thank you for your attention.

Jenča, Lindenhovius (STU, SAS)

3

イロト イヨト イヨト

Conjecture (Quantum Cantor-Schröder-Bernstein)

Let $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{Y} \to \mathcal{X}$ be injective functions between quantum sets \mathcal{X} and \mathcal{Y} . Then there is a bijection $\mathcal{X} \cong \mathcal{Y}$.

In terms of operator algebras, this translates to

Conjecture

Let $f : M \to N$ and $g : N \to M$ be surjective normal unital *-homomorphisms between hereditarily atomic von Neumann algebras M and N. Then there is a *-isomorphism $M \to N$.

Probably we need:

Conjecture

Let \mathcal{X} and \mathcal{Y} be quantum posets for which there is an order isomorphism $\mathcal{D}(\mathcal{X}) \to \mathcal{D}(\mathcal{Y})$. Then there is an order isomorphism $\mathcal{X} \to \mathcal{Y}$.

Thank you for your attention.

Jenča, Lindenhovius (STU, SAS)

イロト 不得 トイヨト イヨト 二日

Conjecture (Quantum Cantor-Schröder-Bernstein)

Let $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{Y} \to \mathcal{X}$ be injective functions between quantum sets \mathcal{X} and \mathcal{Y} . Then there is a bijection $\mathcal{X} \cong \mathcal{Y}$.

In terms of operator algebras, this translates to

Conjecture

Let $f : M \to N$ and $g : N \to M$ be surjective normal unital *-homomorphisms between hereditarily atomic von Neumann algebras M and N. Then there is a *-isomorphism $M \to N$.

Probably we need:

Conjecture

Let \mathcal{X} and \mathcal{Y} be quantum posets for which there is an order isomorphism $\mathcal{D}(\mathcal{X}) \to \mathcal{D}(\mathcal{Y})$. Then there is an order isomorphism $\mathcal{X} \to \mathcal{Y}$.

Thank you for your attention.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Conjecture (Quantum Cantor-Schröder-Bernstein)

Let $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{Y} \to \mathcal{X}$ be injective functions between quantum sets \mathcal{X} and \mathcal{Y} . Then there is a bijection $\mathcal{X} \cong \mathcal{Y}$.

In terms of operator algebras, this translates to

Conjecture

Let $f : M \to N$ and $g : N \to M$ be surjective normal unital *-homomorphisms between hereditarily atomic von Neumann algebras M and N. Then there is a *-isomorphism $M \to N$.

Probably we need:

Conjecture

Let \mathcal{X} and \mathcal{Y} be quantum posets for which there is an order isomorphism $\mathcal{D}(\mathcal{X}) \to \mathcal{D}(\mathcal{Y})$. Then there is an order isomorphism $\mathcal{X} \to \mathcal{Y}$.

Thank you for your attention.

Jenča, Lindenhovius (STU, SAS)

イロト 不得下 イヨト イヨト 二日