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A very short summary

In the context of supremum-preserving functions as morphisms, complete
lattices are called suplattices.

We introduce a noncommutative version of complete lattices, which we
call quantum suplattices, which:

are obtained via a scheme called discrete quantization;

are algebras for monads that are quantum versions of the power set
monad and the lower set monad;

are not generalizations of ordinary suplattices;

satisfy usual theorems for ordinary suplattices such as the existence of
Galois connections and the Knaster-Tarski Theorem.
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Jenča, Lindenhovius (STU, SAS) Quantum Suplattices QPL 2023 2 / 19



A very short summary

In the context of supremum-preserving functions as morphisms, complete
lattices are called suplattices.

We introduce a noncommutative version of complete lattices, which we
call quantum suplattices, which:

are obtained via a scheme called discrete quantization;

are algebras for monads that are quantum versions of the power set
monad and the lower set monad;

are not generalizations of ordinary suplattices;

satisfy usual theorems for ordinary suplattices such as the existence of
Galois connections and the Knaster-Tarski Theorem.
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Non-commutative mathematics

A program to obtain natural models of quantum structures;

Main idea: algebras of operators on a Hilbert space H can be used to
construct ‘non-commutative’ generalizations of classical structures;

Example: X 7→ C (X ) yields a categorical duality between the
categories of compact Hausdorff spaces and of commutative unital
C*-algebras (Gelfand duality);

Hence the dual of the category of unital C*-algebras can be regarded
as the category of ‘non-commutative’ compact Hausdorff spaces.

Quantization is the process of finding noncommutative versions of a
mathematical structure.
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Jenča, Lindenhovius (STU, SAS) Quantum Suplattices QPL 2023 3 / 19



Non-commutative mathematics

A program to obtain natural models of quantum structures;

Main idea: algebras of operators on a Hilbert space H can be used to
construct ‘non-commutative’ generalizations of classical structures;

Example: X 7→ C (X ) yields a categorical duality between the
categories of compact Hausdorff spaces and of commutative unital
C*-algebras (Gelfand duality);

Hence the dual of the category of unital C*-algebras can be regarded
as the category of ‘non-commutative’ compact Hausdorff spaces.

Quantization is the process of finding noncommutative versions of a
mathematical structure.
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Background

Duan, Severini, Winter: quantum graphs in quantum error correction;

Kuperberg and Weaver: quantization of metric spaces; quantum
hamming metric in quantum error correction

Weaver: identification of quantum relations as underlying structure of
quantum metric spaces and quantum graphs;

Weaver: quantum posets;

Kornell: quantum sets and their categorical properties;

Kornell, L., Mislove: categorical structure of quantum posets;

Kornell, L., Mislove: quantum cpos and their application in the
semantics of quantum programming languages.
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Motivation for the quantization of suplattices

Topologies on sets are examples of suplattices

There is no theory of noncommutative topological spaces beyond
locally compact Hausdorff spaces;

Several relevant topologies such as the Scott topology on a cpo are
not locally compact or Hausdorff;

Quantum suplattices might be a first step towards a theory of
quantum topological spaces beyond locally compact Hausdorff spaces;

Suplattices form an example of a ∗-autonomous category; such
categories can be used for the semantics of classical multiplicative
linear logic;

We expect that also quantum suplattices form a ∗-autonomous
category.
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Internalization

Internalization is the process of generalizing set-theoretic constructions
that can be defined in terms of the categorical structure of Set or Rel to
other categories that posses the same categorical structure needed for
these constructions. Example: in any category with all finite products, a
group G is an object equipped with morphisms m : G × G → G ,
e : 1 → G , and (−)−1 : G → G such that:

Unitality:
G × 1 G × G

G G

idG×e

∼= m

=

1× G G × G

G G

e×idG

∼= m

=

Associativity:
G × G × G G × G

G × G G

m×idG

idG×m m

m

Inverses:
G G × G G × G

1 G

diagG

!

idG×(−)−1

m

e

G G × G G × G

1 G

diagG

!

(−)−1×idG

m

e

Groups in Top are topological groups, groups in SmoothManifolds are
Lie groups.
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Quantization by internalization

We employ a method of quantization by internalizing structures in a
suitable category of C*-algebras whose objects are noncommutative
generalizations of sets;

In general, one can internalize functions in a category resembling Rel,
whereas binary relations cannot always be internalized in a category
resembling Set;

Therefore, our category of operator algebras should be a
noncommutative generalization of the category Rel;

The dual of the category WStar of von Neumann algebras can be
regarded the category of ‘non-commutative’ measure spaces.

Weaver: quantum relations between von Neumann algebras are
certain operator spaces generalizing measurable binary relations.
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Hereditarily atomic von Neumann algebras

Hereditarily atomic von Neumann algebras are von Neumann algebras
isomorphic to

⊕
i∈I L(Hi ) with Hi a finite-dimensional Hilbert space,

and can be used as non-commutative generalizations of sets;

The category WRel of von Neumann algebras and quantum relations
is a quantaloid (Sup-enriched category) with a dagger;

Its full subcategory WRelHA of hereditarily atomic von Neumann
algebras is a dagger compact quantaloid just like Rel.

Discrete quantization is the process of internalizing mathematical
structures in WRelHA;

Compare: fuzzification can be regarded as internalizing structures in
V -Rel for a quantale V such as [0, 1];

WRelHA is equivalent to a category qRel that can be described in
terms of Hilbert spaces.
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Quantum sets and binary relations

Definition

A quantum set X is a family of finite-dimensional Hilbert spaces
called atoms of X ;

A binary relation R : X → Y is a function assigning to each atom X
of X and each atom Y of Y a subspace R(X ,Y ) of the space
L(X ,Y ) of linear maps X → Y .

A binary relation R from X = {X1, . . . ,Xn} to Y = {Y1, . . . ,Ym} can be
represented in matrix form:

R =


R(X1,Y1) R(X2,Y1) · · · R(Xn,Y1)
R(X1,Y2) R(X2,Y2) · · · R(Xn,Y2)

...
...

. . .
...

R(X1,Ym) R(X2,Yn) · · · R(Xn,Ym)


We compose binary relations by ‘matrix multiplication’.
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Quantum sets and binary relations

Any quantum set X corresponds to a hereditarily atomic von
Neumann algebra

⊕
X∈X L(X ) that is unique up to isomorphism;

The identity relation IX on X is the ‘diagonal’ matrix with diagonal
elements IX (X ,X ) = C1X ;
Binary relations on quantum sets were introduced by Kornell1, but are
essentially Weaver’s quantum relations on von Neumann algebras2;

The category qRel of quantum sets and binary relations is
dagger-compact;

The inclusion relation between subspaces induces an order ≤ on binary
relations between X and Y such that qRel becomes a quantaloid;

We have a fully faithful functor ‘(−) : Rel → qRel preserving the
dagger structure and the order between relations.

1A. Kornell, Quantum sets, J. Math. Phys. 61 (2020)
2N. Weaver, Quantum relations, Mem. Amer. Math. Soc. 215 (2012).
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Quantum sets and functions

A morphism f : X → Y in Rel is a function if and only if f † ◦ f ≥ 1X and
f ◦ f † ≤ 1Y .

Definition

A function F : X → Y between quantum sets is a relation satisfying
F † ◦ F ≥ IX and F ◦ F † ≤ IY . The category of quantum sets and functions
is denoted by qSet.

qSet is complete, cocomplete and symmetric monoidal closed3;

The assignment X 7→ ℓ∞(X ) :=
⊕

X∈X L(X ) extends to a duality
between qSet and the category WStarHA of hereditarily atomic von
Neumann algebras and normal unital ∗-homomorphisms;

‘(−) restricts to a fully faithful functor Set → qSet.

3A. Kornell, Quantum sets, J. Math. Phys. 61 (2020)
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Quantum posets

Definition

An preorder on a quantum set X is a binary relation ≼≼≼ : X → X such
that

(1) IX ≤ ≼≼≼ (reflexivity);
(2) ≼≼≼ ◦≼≼≼ ≤ ≼≼≼ (transitivity).

The opposite ≽≽≽ := ≼≼≼† of a preorder is a preorder.

A preorder ≼≼≼ on X is called an order if

(3) ≼≼≼ ∧≽≽≽ ≤ IX (antisymmetry)

A function F : (X ,≼≼≼X ) → (Y,≼≼≼Y) is monotone if F ◦≼≼≼X ≤ ≼≼≼Y ◦ F

Example

Let H2 be the quantum set whose single atom is the two-dimensional
Hilbert space H2. Then (H2,≼≼≼) is a quantum poset for

≼≼≼(H2,H2) := C
(
1 0
0 1

)
+ C

(
0 1
0 0

)
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Jenča, Lindenhovius (STU, SAS) Quantum Suplattices QPL 2023 12 / 19



Lower sets, suplattices and monotone relations
(1) Suplattices are the algebras of the lower set monad D on Pos;

(2) Suplattices are posets X such that the canonical embedding
X → D(X ), x 7→↓ x has a lower Galois adjoint

∨
.

Definition

A monotone relation r : X → Y between posets is a binary relation such
that (x1, y1) ∈ r implies (x2, y2) ∈ r for each x1 ≤ x2 in X and each
y1 ≥ y2 in Y .

Any monotone relation r : X → Y corresponds to a monotone
function X op × Y → 2, so to a 2-enriched profunctor when X and Y
are regarded as 2-enriched categories;

The category RelPos of posets and monotone relations is compact
closed.

The embedding Pos → RelPos has a right adjoint; the induced
monad on Pos is the lower set monad D. The unit of the adjunction
is the embedding X → D(X ), x 7→↓ x .

Jenča, Lindenhovius (STU, SAS) Quantum Suplattices QPL 2023 13 / 19



Lower sets, suplattices and monotone relations
(1) Suplattices are the algebras of the lower set monad D on Pos;

(2) Suplattices are posets X such that the canonical embedding
X → D(X ), x 7→↓ x has a lower Galois adjoint

∨
.

Definition

A monotone relation r : X → Y between posets is a binary relation such
that (x1, y1) ∈ r implies (x2, y2) ∈ r for each x1 ≤ x2 in X and each
y1 ≥ y2 in Y .

Any monotone relation r : X → Y corresponds to a monotone
function X op × Y → 2, so to a 2-enriched profunctor when X and Y
are regarded as 2-enriched categories;

The category RelPos of posets and monotone relations is compact
closed.

The embedding Pos → RelPos has a right adjoint; the induced
monad on Pos is the lower set monad D. The unit of the adjunction
is the embedding X → D(X ), x 7→↓ x .
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Monotone relations between quantum posets

Definition

A monotone relation R : (X ,≼≼≼X ) → (Y,≼≼≼Y) between quantum posets is
a binary relation R : X → Y such that ≽≽≽Y ◦ R ≤ R and R ◦≽≽≽X ≤ R.

Theorem

The category qRelPos of quantum posets and monotone relations is
compact closed.

Theorem

The embedding qPos → qRelPos has a right adjoint; its induced monad
D is called the quantum lower set monad.

The existence of right adjoints of embeddings Pos → RelPos,
Rel → Set, qRel → qSet and qPos → qRelPos can all be proven in
one scheme involving the embedding of a symmetric monoidal closed
category S into a compact closed category R;
All these embeddings are examples of proarrow equipments.
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Galois connections between quantum posets

Definition

The pointwise order ⊑Y of functions F ,G : X → Y where X is a quantum
set and Y is a quantum poset ordered by ≼≼≼ is defined by F ⊑Y G if and
only if F ≤ ≽≽≽ ◦ G .

Definition

A Galois connection between quantum posets (X ,≼≼≼X ) and (Y,≼≼≼Y)
consists of a pair of monotone maps F : X → Y and G : Y → X such that

IX ⊑X G ◦ F , F ◦ G ⊑Y IY .

F is called the lower Galois adjoint of G .
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Quantum suplattices
The unit of the qPos/qRelPos adjunction yields a canonical order
embedding X → D(X ); a quantum generalization of the order embedding
X → D(X ), x 7→↓ x for ordinary posets X .

Definition

A quantum poset (X ,≼≼≼X ) is called a quantum suplattice if the canonical
order embedding X → D(X ) has a lower Galois adjoint

∨∨∨
X . A monotone

map F : (X ,≼≼≼X ) → (Y,≼≼≼Y) between quantum suplattices is called a
sup-homomorphism if F ◦

∨∨∨
X =

∨∨∨
Y ◦ D(F ). The category of quantum

suplattices and sup-homomorphisms is denoted by qSup.

Example

Let X be a quantum poset. Then D(X ) is a quantum suplattice where∨∨∨
D(X ) is the multiplication D2(X ) → D(X ).

Theorem

qSup is equivalent to the Eilenberg-Moore category of D.
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∨∨∨
X =

∨∨∨
Y ◦ D(F ). The category of quantum

suplattices and sup-homomorphisms is denoted by qSup.

Example

Let X be a quantum poset. Then D(X ) is a quantum suplattice where∨∨∨
D(X ) is the multiplication D2(X ) → D(X ).

Theorem

qSup is equivalent to the Eilenberg-Moore category of D.
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Suplattices are not quantum suplattices

Proposition

The fully faithful functor ‘(−) : Pos → qPos does not restrict and
corestrict to a functor Sup → qSup.

Counterexample

The 4-element Boolean algebra is not a quantum suplattice.

If X is a poset with poset D(X ) of lower sets, then ‘X is a quantum
poset, and ‘D(X ) is a quantum poset which embeds into D(‘X );

The image of this embedding are the one-dimensional atoms of
D(‘X ), i.e., its classical part of D(‘X ).

However, D(‘X ) has also higher-dimensional atoms.

Conjecture

Let (X ,⊑) be a complete linearly ordered lattice. Then (‘X , ‘⊑) is a weak
quantum suplattice, hence a quantum suplattice.
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Quantum versions of some theorems on suplattices

Theorem

The opposite (X ,≽≽≽) of a quantum suplattice (X ,≼≼≼) is a quantum
suplattice.

Theorem

Let F : X → Y be a monotone map between quantum suplattices. Then
F is a sup-homomorphism if and only if F is a lower Galois adjoint.

Let F : X → X be a monotone endomap on a quantum poset X . A
subset Y ⊆ X with canonical embedding JY : Y → X is called a subset of
fixpoints if F ◦ JY = JY .

Theorem (Quantum Knaster-Tarski)

Let F : X → X be a monotone endomap on a quantum suplattice (X ,≼≼≼).
Then the largest subset of fixpoints Y of X exists and is a quantum
suplattice in its relative order J†Y ◦≼≼≼ ◦ JY .
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Future work

Conjecture (Quantum Cantor–Schröder–Bernstein)

Let F : X → Y and G : Y → X be injective functions between quantum
sets X and Y. Then there is a bijection X ∼= Y.

In terms of operator algebras, this translates to

Conjecture

Let f : M → N and g : N → M be surjective normal unital
∗-homomorphisms between hereditarily atomic von Neumann algebras M
and N. Then there is a ∗-isomorphism M → N.

Probably we need:

Conjecture

Let X and Y be quantum posets for which there is an order isomorphism
D(X ) → D(Y). Then there is an order isomorphism X → Y.

Thank you for your attention.
Jenča, Lindenhovius (STU, SAS) Quantum Suplattices QPL 2023 19 / 19



Future work

Conjecture (Quantum Cantor–Schröder–Bernstein)

Let F : X → Y and G : Y → X be injective functions between quantum
sets X and Y. Then there is a bijection X ∼= Y.

In terms of operator algebras, this translates to

Conjecture

Let f : M → N and g : N → M be surjective normal unital
∗-homomorphisms between hereditarily atomic von Neumann algebras M
and N. Then there is a ∗-isomorphism M → N.

Probably we need:

Conjecture

Let X and Y be quantum posets for which there is an order isomorphism
D(X ) → D(Y). Then there is an order isomorphism X → Y.

Thank you for your attention.
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