### New Entanglement Witnesses and Entangled States

### Anita Buckley<sup>1</sup> and Klemen Šivic<sup>2</sup>

<sup>1</sup> Università della Svizzera italiana, Switzerland <sup>2</sup> University of Ljubljana, Slovenia

Paris, 20th July 2023

QPL 2023

## • Why do we still need new entangled states / positive maps?

- Why do we still need new entangled states / positive maps?
- Positive maps via the "method of prescribing zeros"

- Why do we still need new entangled states / positive maps?
- Positive maps via the "method of prescribing zeros"
- SDP algorithm

### Artwork by Sandbox Studio, Chicago with Ana Kova



3/30

#### Hilbert spaces $\mathcal{H} \longrightarrow$ operator algebras $B(\mathcal{H})$

<sup>1</sup>G. Aubrun and S. J. Szarek, Alice and Bob Meet Banach: The interface of asymptotic geometric analysis and quantum information theory. AMS (2017)

A. Buckley and K. Šivic



<sup>1</sup>G. Aubrun and S. J. Szarek, *Alice and Bob Meet Banach: The interface of asymptotic geometric analysis and quantum information theory.* AMS (2017)

A. Buckley and K. Šivic



<sup>1</sup>G. Aubrun and S. J. Szarek, *Alice and Bob Meet Banach: The interface of asymptotic geometric analysis and quantum information theory.* AMS (2017)

A. Buckley and K. Šivic



<sup>1</sup>G. Aubrun and S. J. Szarek, *Alice and Bob Meet Banach: The interface of asymptotic geometric analysis and quantum information theory.* AMS (2017)

A. Buckley and K. Šivic

## $\mathcal{SEP}\left(\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2} ight)\subset\mathcal{PSD}\left(\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2} ight)$

 $\left( \operatorname{M}_{d_1d_2}^{\mathsf{sa}}: \mathbb{R}$ -vector space of dim  $(d_1d_2)^2 \right)$ 



$$\left| \mathcal{SEP}\left( \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} 
ight) := \mathsf{conv}\left\{ \mathcal{PSD}(\mathbb{C}^{d_1}) \otimes \mathcal{PSD}(\mathbb{C}^{d_2}) 
ight\}$$

A. Buckley and K. Šivic



The separability problem

Given a positive semidefinite matrix

 $ho \in \mathcal{PSD}\left(\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}
ight)$ 

can you certify whether it is separable?



### The separability problem is NP-hard<sup>2</sup>

A. Buckley and K. Šivic

<sup>&</sup>lt;sup>2</sup>S. Gharibian, *Strong np-hardness of the quantum separability problem.* QIC (2010)

# ${igstar{}} {igstar{}} {ig$



• Compact convex set D is much larger than SEP<sup>3</sup>

• D and SEP have the same inradius<sup>4</sup> w.r.t. HS norm and center  $\frac{1}{d_1d_2}I$ 

<sup>3</sup>I. Klep et al., *There are many more positive maps than completely positive maps.* IMRN (2019) <sup>4</sup>L. Gurvits and H. Barnum, *Balls around maximally mixed bipartite quantum state.* Phys. Rev. A (2002)

A. Buckley and K. Šivic

### Horodecki's entanglement witness theorem

A state  $\rho$  on  $\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$  is entangled if and only if there exists a positive map  $\Phi: M_{d_1}^{sa} \to M_{d_2}^{sa}$  such that the matrix  $\left(\Phi \otimes \mathrm{Id}_{M_{d_2}^{sa}}\right)\rho$  is not positive semidefinite.<sup>5</sup>

For  $\Phi = T$ , the transposition, we get:

#### PPT criterion or Peres-Horodecki criterion

 $SEP \subset PSD \cap \Gamma(PSD)$ , where  $\Gamma := T \otimes Id$  (partial transpose)

The strength of the PPT criterion is in detecting entanglement:

• If the partial transpose of a state is not positive, the state itself must be non-separable, i.e., entangled

<sup>&</sup>lt;sup>5</sup>M. P. R. Horodecki, *Separability of mixed states: necessary and sufficient conditions.* Phys. Lett. A (1996) A. Buckley and K. Šivic Entanglement Witnesses QPL 2023 9/30

### SEP $\subset$ D $\cap$ $\Gamma$ (D), where $\Gamma = T \otimes Id$

• Partial transposition detects entanglement in any pure state

• Sep  $(\mathbb{C}^3 \otimes \mathbb{C}^3) \subsetneq \mathsf{PPT} (\mathbb{C}^3 \otimes \mathbb{C}^3)$ 



### Choi map $\Psi$ :



$$\begin{array}{cccc} B\left(\mathrm{M}_{3},\,\mathrm{M}_{3}\right) & \xrightarrow{Choi} & B\left(\mathbb{C}^{3}\otimes\mathbb{C}^{3}\right) \\ \Phi \colon \mathrm{M}_{3} \to \mathrm{M}_{3} & \mapsto & Choi(\Phi) \colon \mathbb{C}^{3}\otimes\mathbb{C}^{3} \to \mathbb{C}^{3}\otimes\mathbb{C}^{3} \\ & & \prod_{i,j} \Phi(E_{ij})\otimes E_{ij} \end{array}$$

Choi matrix of  $\Phi$ :

$$Choi(\Phi) = (\Phi \otimes \mathrm{Id}) \ (|\chi\rangle\!\langle\chi|) \ \ \text{where} \ \ \chi = \sum_i e_i \otimes e_i.$$

 $^6 \text{Choi}$  isomorphism vs. Jamiołkowski isomorphism:  $\textit{Choi} = \Gamma \circ \textit{Jami}$ 

| Cone of superoperato  | rs C   | Cone of ma            | Dual cone $\mathcal{C}^*$                 |                                           |
|-----------------------|--------|-----------------------|-------------------------------------------|-------------------------------------------|
|                       |        |                       | 22                                        | 222                                       |
| positive              | P      | block positive        | BP                                        | SEP                                       |
|                       | $\cup$ |                       | U                                         | $\cap$                                    |
| decomposable          | DEC    | decomposable          | $\textbf{co-}\mathcal{PSD}+\mathcal{PSD}$ | $\mathcal{PPT}$                           |
|                       | U      |                       | $\cup$                                    | $\cap$                                    |
| completely positive   | СР     | positive semidefinite | $\mathcal{PSD}$                           | $\mathcal{PSD}$                           |
|                       | U      |                       | $\cup$                                    | $\cap$                                    |
| PPT-inducing          | PPT    | PPT                   | $\mathcal{PPT}$                           | $\textbf{co-}\mathcal{PSD}+\mathcal{PSD}$ |
|                       | U      |                       | U                                         | $\cap$                                    |
| entanglement breaking | EB     | separable             | $\mathcal{SEP}$                           | $\mathcal{BP}$                            |
|                       |        |                       |                                           |                                           |

### Positive maps $\Phi: M_3^{sa} \to M_3^{sa}$



## • Why do we still <u>need</u> new entangled states / positive maps?

- Positive maps via the "method of prescribing zeros"
- SDP algorithm

## • Why do we still want new entangled states / positive maps?

- Positive maps via the "method of prescribing zeros"
- SDP algorithm

- Why do we still want new entangled states / positive maps?
- Positive maps via the "method of prescribing zeros"
- SDP algorithm

## What did Choi<sup>7</sup> do?

 $\begin{aligned} \mathbf{x} &= (x_0, x_1, x_2) \in \mathbb{R}^3 \\ \mathbf{y} &= (y_0, y_1, y_2) \in \mathbb{R}^3 \end{aligned}$ 



<sup>7</sup>M.-D. Choi, *Positive semidefinite biquadratic forms*. LAA (1975)

A. Buckley and K. Šivic



Nonegative biquadratic form 
$$\langle y | \Psi (|x \rangle \langle x|) | y \rangle$$
:  
 $x_0^2 y_0^2 + x_1^2 y_1^2 + x_2^2 y_2^2 + x_0^2 y_2^2 + x_1^2 y_0^2 + x_2^2 y_1^2 - 2x_0 x_1 y_0 y_1 - 2x_0 x_2 y_0 y_2 - 2x_1 x_2 y_1 y_2$ 



Nonegative biquadratic form  $\langle y | \Psi (|x \rangle \langle x|) | y \rangle$ :  $x_0^2 y_0^2 + x_1^2 y_1^2 + x_2^2 y_2^2 + x_0^2 y_2^2 + x_1^2 y_0^2 + x_2^2 y_1^2 - 2x_0 x_1 y_0 y_1 - 2x_0 x_2 y_0 y_2 - 2x_1 x_2 y_1 y_2$ 

7 zeros: (1, 1, 1; 1, 1, 1), (1, 1, -1; 1, 1, -1), (1, -1, 1; 1, -1, 1), (-1, 1, 1; -1, 1, 1), (1, 0, 0; 0, 1, 0), (0, 1, 0, 0, 0, 1), (0, 0, 1; 1, 0, 0)

A. Buckley and K. Šivic

- Nonnegative biquadratic form which is not a sum of squares can have at most 10 zeros
- The number of real zeros of an SOS form is either infinite or at most 6
- ⇒ Nonnegative biquadratic forms with 7, 8, 9 or 10 zeros define positive maps that are not completely positive

<sup>&</sup>lt;sup>8</sup>R. Quarez, On the real zeros of positive semidefinite biquadratic forms. Commun. Algebra (2015)

 $\begin{aligned} \mathbf{x} &= (x_0, x_1, x_2) \in \mathbb{C}^3 \\ \mathbf{y} &= (y_0, y_1, y_2) \in \mathbb{C}^3 \end{aligned}$ 

$$\begin{array}{c|c} \Phi \colon \, \mathrm{M}_{3}^{\mathtt{sa}} \to \mathrm{M}_{3}^{\mathtt{sa}} & p_{\Phi}(\mathrm{x},\mathrm{y}) := \, \langle \mathrm{y} | \, \Phi \left( |\mathrm{x} \rangle \! \langle \mathrm{x} | \right) | \mathrm{y} \rangle \\ \end{array}$$
positive maps
nonnegative forms

The zero set of  $\Phi$  :

$$\{(\mathbf{x},\mathbf{y})\in\mathbb{C}^3 imes\mathbb{C}^3:\ p_\Phi(\mathbf{x},\mathbf{y})=0\}$$

#### Goal

Construct nonnegative polynomials  $p_{\Phi}(x, y)$ , which have 8, 9 or 10 real zeros.

A. Buckley and K. Šivic

### Zeros in $\mathbb{R}$ :

$$\begin{array}{c}(1,1,1;1,1,1),(1,1,\!-\!1;1,1,\!-\!1),(1,\!-\!1,1;1,\!-\!1,1),(-\!1,1,1;\!-\!1,1,1),\\(1,t,0;t,1,0),(0,1,t;0,t,1),(t,0,1;1,0,t),\\(1,-t,0;-t,1,0),(0,1,-t;0,-t,1),(-t,0,1;1,0,-t)\end{array}$$

Zeros in  $\mathbb{C}$ :

$$\begin{split} (e^{i\varphi_0}, e^{i\varphi_1}, e^{i\varphi_2}; e^{i\varphi_0}, e^{i\varphi_1}, e^{i\varphi_2}), \\ (1, te^{i\varphi}, 0; te^{-i\varphi}, 1, 0), (0, 1, te^{i\varphi}; 0, te^{-i\varphi}, 1), (te^{i\varphi}, 0, 1; 1, 0, te^{-i\varphi}) \end{split}$$

### Theorem ("10 zeros")

Superoperators  $\Phi_t$ :  $M_3^{sa} \to M_3^{sa}$  are positive for  $t \in \mathbb{R}$ :

$$\begin{bmatrix} (t^2-1)^2 z_{00}+z_{11}+t^4 z_{22} & -(t^4-t^2+1) z_{01} & -(t^4-t^2+1) z_{02} \\ -(t^4-t^2+1) z_{10} & t^4 z_{00}+(t^2-1)^2 z_{11}+z_{22} & -(t^4-t^2+1) z_{12} \\ -(t^4-t^2+1) z_{20} & -(t^4-t^2+1) z_{21} & z_{00}+t^4 z_{11}+(t^2-1)^2 z_{22} \end{bmatrix}$$

Apart from  $t = \pm 1$ , these positive maps are not completely or co-completely positive. Moreover,  $\Phi_t$  define extreme rays in the cone of positive maps.

### Zeros in $\mathbb{R}$ :

$$\begin{array}{c}(1,1,1;1,1,1),(1,1,\!-\!1;1,1,\!-\!1),(1,\!-\!1,1;1,\!-\!1,1),(-\!1,1,1;\!-\!1,1,1),\\(1,p,0;q,1,0),(1,-\!p,0;-\!q,1,0),\\(0,1,q;0,p,1),(0,1,-\!q;0,-\!p,1),(0,0,1;1,0,0)\end{array}$$

Zeros in  $\mathbb{C}$ :

$$\begin{array}{c}(e^{i\varphi_{0}},e^{i\varphi_{1}},e^{i\varphi_{2}};\,e^{i\varphi_{0}},e^{i\varphi_{1}},e^{i\varphi_{2}}),\\ (1,p\,e^{i\varphi},0;\,q\,e^{-i\varphi},1,0),(0,1,q\,e^{i\varphi};\,0,p\,e^{-i\varphi},1),(0,0,1;\,1,0,0)\end{array}$$

### Theorem ("9 zeros")

 $\begin{bmatrix} D_{00} & -pq(1-q^2+p^2q^2)z_{01} & (pq-1)(p^2+pq-p^3q-q^2+p^2q^2)z_{02} \\ -pq(1-q^2+p^2q^2)z_{10} & D_{11} & -pq(1-q^2+p^2q^2)z_{12} \\ (pq-1)(p^2+pq-p^3q-q^2+p^2q^2)z_{20} & -pq(1-q^2+p^2q^2)z_{21} & D_{22} \end{bmatrix}$ 

Positive, extremal and neither CP nor co-CP on  $\mathcal{R}$ 



A. Buckley and K. Šivic

### Zeros in $\mathbb{R}$ :

$$\begin{array}{c}(1,1,1;1,1,1),(1,1,-1;1,1,-1),(1,-1,1;1,-1,1),(-1,1,1;-1,1,1),\\(1,0,0;\,m,1,0),\,(1,n,0;\,0,1,0),\,(0,1,0;\,0,0,1),\,(0,0,1;\,1,0,0)\end{array}$$

### Zeros in $\mathbb{C}$ :

$$\begin{array}{c} (1,1,e^{i\varphi};\,1,1,e^{i\varphi}),\,(1,-1,e^{i\varphi};\,1,-1,e^{i\varphi}),\\ (1,0,0;\,m,1,0),\,(1,n,0;\,0,1,0),\,(0,1,0;\,0,0,1),\,(0,0,1;\,1,0,0) \end{array}$$

### Theorem ("8 zeros")

$$\begin{bmatrix} n^2 (z_{00} + m(z_{01} + z_{10}) + m^2 z_{11}) & -mn(nz_{00} - z_{01} + mnz_{10} - mz_{11}) & -n(m+n)(z_{02} + mz_{12}) \\ -mn(nz_{00} - z_{10} + mnz_{01} - mz_{11}) & m^2 (n^2 z_{00} - n(z_{01} + z_{10}) + z_{11}) & m(m+n)(nz_{02} - z_{12}) \\ -n(m+n)(z_{20} + mz_{21}) & m(m+n)(nz_{20} - z_{21}) & (m+n)^2 z_{22} \end{bmatrix}$$

$$+b\begin{bmatrix} z_{11} & 0 & -z_{02} \\ 0 & z_{22} & -z_{12} \\ -z_{20} & -z_{21} & z_{00} + z_{22} \end{bmatrix} +c\begin{bmatrix} 0 & z_{01} - z_{10} & 0 \\ z_{10} - z_{01} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Positive, extremal and neither CP nor co-CP on A



- Why do we still want new entangled states / positive maps?
- Positive maps via the "method of prescribing zeros"
- SDP algorithm



### Algorithm: Semidefinite program

| minimize:   | $\operatorname{Tr}\left(\operatorname{Choi}(\Phi) ho ight)$ |
|-------------|-------------------------------------------------------------|
| subject to: | $(\Psi^{\dagger}\otimes \mathrm{Id}) ho \succeq 0$          |
|             | $(T\otimes \mathrm{Id}) ho \succeq 0$                       |
|             | $ ho \succeq 0$                                             |

 $\rho_t =$ 

|   |                        |          |                        |                        |                        |          | 1                      |                        |                        |  |
|---|------------------------|----------|------------------------|------------------------|------------------------|----------|------------------------|------------------------|------------------------|--|
| ſ | s <sub>00</sub>        | ·        | ·                      | •                      | <i>s</i> <sub>04</sub> | ·        | •                      | ·                      | <i>s</i> <sub>04</sub> |  |
|   | •                      | $s_{11}$ | •                      | •                      | •                      | •        | •                      | •                      | •                      |  |
|   | •                      | •        | <i>s</i> <sub>22</sub> | •                      | •                      | •        | •                      | •                      | •                      |  |
|   | •                      | •        | •                      | <i>s</i> <sub>22</sub> | •                      | •        | •                      | •                      | •                      |  |
|   | <i>s</i> <sub>04</sub> | •        | ·                      | •                      | <i>s</i> <sub>00</sub> | •        | •                      | •                      | <i>s</i> <sub>04</sub> |  |
|   | •                      | •        | ·                      | •                      | •                      | $s_{11}$ | •                      | •                      | •                      |  |
|   | •                      | •        | •                      | •                      | •                      | •        | <i>s</i> <sub>11</sub> | •                      | •                      |  |
|   | •                      | •        | •                      | •                      | •                      | •        | •                      | <i>s</i> <sub>22</sub> | •                      |  |
| L | <i>s</i> <sub>04</sub> | •        | ·                      | •                      | <i>s</i> <sub>04</sub> | •        |                        | •                      | <i>s</i> <sub>00</sub> |  |



A. Buckley and K. Šivic



| ſ | - s <sub>00</sub>      | ·        | ·                      | •                      | <i>s</i> <sub>04</sub> | •                      | •                      | •           | <i>s</i> <sub>08</sub> |
|---|------------------------|----------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------|------------------------|
|   | •                      | $s_{11}$ | ·                      |                        |                        | ·                      | •                      | ·           | •                      |
| ĺ | •                      | •        | <i>s</i> <sub>22</sub> | •                      | •                      | •                      | •                      | •           | •                      |
| İ | •                      | •        | •                      | <i>s</i> <sub>33</sub> | •                      | •                      | •                      | •           | •                      |
|   | <i>s</i> <sub>04</sub> | •        | ·                      | •                      | <i>s</i> <sub>44</sub> | •                      | •                      | •           | <i>s</i> <sub>48</sub> |
|   | •                      | •        | •                      | •                      | •                      | <i>s</i> <sub>55</sub> | •                      | •           | •                      |
|   | •                      | •        | •                      | •                      | •                      | •                      | <i>s</i> <sub>66</sub> | •           | •                      |
| l | •                      | •        | ·                      | •                      | •                      | •                      | •                      | <b>S</b> 77 | •                      |
| L | <i>s</i> <sub>08</sub> | •        | •                      | •                      | <b>S</b> 48            | •                      | •                      | •           | <i>s</i> <sub>88</sub> |



 $\rho_{m,n} =$ 

| Γ | $r_{00}$               | $r_{01}$ | •        | $r_{03}$               | $r_{04}$               | •        | •               | •        | $r_{08}$        |
|---|------------------------|----------|----------|------------------------|------------------------|----------|-----------------|----------|-----------------|
|   | $r_{01}$               | $r_{11}$ | •        | $r_{13}$               | $r_{14}$               | •        | •               |          | $r_{18}$        |
|   |                        | •        | $r_{22}$ | •                      |                        | $r_{25}$ | •               | •        |                 |
|   | <i>r</i> <sub>03</sub> | $r_{13}$ | •        | <i>r</i> <sub>33</sub> | <i>r</i> <sub>34</sub> | •        | •               | •        | r <sub>38</sub> |
|   | $r_{04}$               | $r_{14}$ | •        | $r_{34}$               | $r_{44}$               | •        | •               | •        | $r_{48}$        |
|   | •                      | •        | $r_{25}$ | •                      | •                      | $r_{55}$ | •               | •        |                 |
|   | •                      | •        | •        | •                      | •                      | •        | r <sub>66</sub> | $r_{67}$ | •               |
|   | •                      | •        | •        | •                      | •                      | •        | r <sub>67</sub> | $r_{77}$ | •               |
| L | $r_{08}$               | $r_{18}$ | •        | <i>r</i> <sub>38</sub> | <i>r</i> <sub>48</sub> | •        | •               | •        | r <sub>88</sub> |



- New families of optimal entanglement witnesses
- A 5-parameter family of positive maps that amalgamates all the generalizations of Choi's map in the literature
- Extremality and non-CP come for free (from the number of zeros)

A. Buckley and K. Šivic

<sup>&</sup>lt;sup>9</sup>A. Buckley and K. Šivic, *New examples of extremal positive linear maps, Linear Algebra Appl. (2020)* <sup>10</sup>arXiv:2112.12643

### **Optimal Entanglement Witness**



 $\begin{array}{rcl} \hline d_1 d_2 \times d_1 d_2 \text{ matrices} \\ B^{\mathsf{sa}} \left( \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \right) &\equiv & \mathrm{M}^{\mathsf{sa}}_{d_1 d_2} \\ & \uparrow & & \uparrow \\ B^{\mathsf{sa}} \left( \mathbb{C}^{d_1} \right) \otimes B^{\mathsf{sa}} \left( \mathbb{C}^{d_2} \right) &\equiv & \mathrm{M}^{\mathsf{sa}}_{d_1} \otimes \mathrm{M}^{\mathsf{sa}}_{d_2} \end{array}$ 

 $\mathcal{L}_{\mathbb{R}}$  {tensor products of  $d_1 \times d_1$  and  $d_2 \times d_2$  matrices}

**OPL 2023** 

### In specified bases,

$$\begin{array}{cccc} B\left(\mathbf{M}_{n},\,\mathbf{M}_{m}\right) & \xrightarrow{C} & B\left(\mathbb{C}^{m}\otimes\mathbb{C}^{n}\right) \\ \Phi \colon \mathbf{M}_{n} \to M_{m} & \mapsto & C(\Phi) \colon \mathbb{C}^{m}\otimes\mathbb{C}^{n} \to \mathbb{C}^{m}\otimes\mathbb{C}^{n}, \\ & & \prod_{i,j} \Phi(E_{ij})\otimes E_{ij} \end{array}$$

Choi matrix of  $\Phi$ :

$$C(\Phi) = (\Phi \otimes \mathrm{Id}) \ (|\chi \rangle \! \langle \chi |) \,, \quad \chi = \sum_i e_i \otimes e_i.$$

For a state  $\rho$  on  $\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ , the following are equivalent:

- **1** state  $\rho$  is entangled,
- 2 there exists  $\sigma \in SEP^* = BP$  such that  $\langle \sigma, \rho \rangle_{HS} = Tr(\sigma\rho) < 0$ ,
- **3** there exists a positive map  $\Psi$ :  $M_{d_2}^{sa} \to M_{d_1}^{sa}$  such that  $Tr(C(\Psi)\rho) < 0$ .

The Horodecki's entanglement witness theorem for a positive map  $\Phi$  is a direct corollary of the above, where  $\Phi = \Psi^{\dagger}$  from statement 3.

$$\mathbf{x},\mathbf{y}\in\mathbb{C}^3$$

| $\Phi\colon\operatorname{M}_3^{\operatorname{sa}}\to\operatorname{M}_3^{\operatorname{sa}}$ | $p_{\Phi}(\mathbf{x},\mathbf{y}) := \langle \mathbf{y}   \Phi( \mathbf{x} \! \left< \! \mathbf{x}   \right)   \mathbf{y}  angle$ |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| positive maps                                                                               | nonnegative forms                                                                                                                |

### Remark (The set of zeros.)

The group  $PGL_3 \times PGL_3$  acts naturally on both, positive maps and nonnegative forms:

$$\begin{array}{ccc} \Psi(Z) &\mapsto & Q \,\Psi\left(PZP^*\right)Q^* \\ \left\langle \mathbf{y} \right| \Psi\left(|\mathbf{x}\rangle\!\langle \mathbf{x}|\right) |\mathbf{y}\rangle &\mapsto & \left\langle Q \,\mathbf{y} \right| \Psi\left(|P \,\mathbf{x}\rangle\!\langle P \,\mathbf{x}|\right) |Q \,\mathbf{y}\rangle \end{array}$$

### For $\Psi_t$ , we are minimizing

$$\operatorname{Tr} \left( C(\Psi_t) \rho \right) = \frac{1}{2 \left( 1 - t^2 + t^4 \right)} \left( s_{11} + s_{55} + s_{66} + t^4 (s_{22} + s_{33} + s_{77}) + \left( 1 - t^2 \right)^2 (s_{00} + s_{44} + s_{88}) - \left( 1 - t^2 + t^4 \right) (s_{04} + \overline{s_{04}} + s_{08} + \overline{s_{08}} + s_{48} + \overline{s_{48}}) \right).$$

- M.-D. Choi, Positive linear maps on C-algebras, Canad. Math. J. (1972)
- M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. (1975)
- K.-C. Ha, Notes on extremality of the Choi map, Linear Algebra Appl. (2013)
- A. W. Harrow, A. Natarajan, and X. Wu, An improved semidefinite programming hierarchy for testing entanglement, Comm. Math. Phys. (2017)

- K.-C. Ha and S.-H. Kye, Entanglement witnesses arising from Choi type positive linear maps, J. Phys. A: Math. Theor. (2012)
- K.-C. Ha and S.-H. Kye, Exposedness of Choi-type entanglement witnesses and applications to lengths of separable states, Open Systems Information Dynamics (2013)
- K.-C. Ha and S.-H. Kye, Separable states with unique decompositions, Commun. Math. Phys. (2014)
- S.-H. Kye, Facial structures for various notions of positivity and applications to the theory of entanglement, Rev. Math. Phys. (2013).
- S.-H. Kye and H. Osaka, Classification of bi-qutrit positive partial transpose entangled edge states by their ranks, J. Math. Phys. (2012).