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Suppose one is studying scenarios where multiple parties
cannot communicate, e.g. because of space-like separation.

Then, it could be useful to understand what is the set of
conceivable operations that they can perform.

This is the case e.g. in resource theories.

This choice is not unique. We could pick

i) The set of non-signalling resources.
ii) The set of common-cause realisable resources.

each of which has its pros and cons.

In this work, we investigate the relation between the two
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Definition of Causal, Locally Tomographic GPT

With the composition rules in mind:

1 The SMC contains Stoch as a full subtheory.

2 There is a convex structure compatible with the one from
Stoch.

3 There is a notion of tomography.

4 There is a unique effect associated to each system type.

*This is the GPT equivalent of quantum theory with only
CPTP maps

Let’s discuss the last two points
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With the context of GPTs in mind, we can now define the notions
of common-cause realisation and non-signalling.
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effect.

5 We diagramatically define common-cause realisations with
shared states.
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But it is realisable in boxworld.

So we can say classical and quantum are not common-cause
complete. Moreover, boxworld common-cause decomposes all
non-signalling classical channels.

Boxworld is a common-cause completion of classical theory.
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A previous result1, guarantees we can always write
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Can we simply add them to the GPT? Not quite.

Why? Negative probabilities
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A: Mathematical and Theoretical (2022)
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Why? Negative probabilities
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If we can find a way to add processes ξ̃Λ, η̃Λi to the GPT in a
consistent way, then we can use that theorem to construct a

common-cause completion.



Hint: The compositional rules in a GPT are given by the matching
of system types.

So, let’s instead add
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Now, we can rewrite the theorem decomposition as
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And we can’t freely compose ξΛ with other processes without
going through ηΛi first

This is the key idea of the construction.
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From this starting point, the challenge is to guarantee all the
compositional properties after the extension from G to G ⊔ η.

1 Take the closure of G ⊔ η under ⊗ and ◦.
Denote the result G ⊔ η

2 Take the closure of G ⊔ η under convex combinations

Denote the result Conv[G ⊔ η]

3 Quotient Conv[G ⊔ η] under operational equivalence.

Because we might have lost tomography
Denote the result Conv[G ⊔ η]/ ∼

Then, C[G] = Conv[G ⊔ η]/ ∼ should be a common-cause
completion of G.
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Each of those steps requires a proof that it guarantees the
desired properties, and preserves the ones from previous
steps

We prove that indeed C[G] = Conv[G ⊔ η]/ ∼ is a causal GPT and
is a common-cause completion of G.

That leads us to our main result
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Main result

Theorem V.1. Given a locally-tomographic causal GPT G, its set
of multipartite non-signalling channels is the same as its set of

multipartite common-cause realisable channels.

Note these common-causes might not be state-preparations
allowed in G.
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Outlook

We investigate the relation between the non-signalling
channels and the GPT-common-cause realisable channels
of causal, locally tomographic GPTs.

We show that, in fact, the two sets coincide.

This answers two open questions23.

NS = GPT-CCC
There exists a GPT that realizes all non-signalling assemblages

Our result provides a more principled reason to use the
non-signalling channels as the enveloping theory in resource
theories.
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Open Questions

1 We know C[G] is causal, but is it locally tomographic?

2 Can we find a similar scheme for when G is not locally
tomographic?
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The End

Thank you!

Take home message:

Non-signalling channels coincide with GPT-common-cause
realisable channels in causal, locally tomographic GPTs.

This provides a causal justification for using non-signalling
channels as the enveloping theory in resource theories.
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