Every non-signalling channel is common-cause realizable

Paulo J. Cavalcanti ${ }^{1}$, John H. Selby ${ }^{1}$, Ana Belén Sainz ${ }^{1}$

${ }^{1}$ International Centre for Theory of Quantum Technologies (ICTQT)

> arXiv:2307.03489

Technologies

Motivation

Motivation

- Suppose one is studying scenarios where multiple parties cannot communicate, e.g. because of space-like separation.

Motivation

- Suppose one is studying scenarios where multiple parties cannot communicate, e.g. because of space-like separation.
- Then, it could be useful to understand what is the set of conceivable operations that they can perform.
- This is the case e.g. in resource theories.

Motivation

- Suppose one is studying scenarios where multiple parties cannot communicate, e.g. because of space-like separation.
- Then, it could be useful to understand what is the set of conceivable operations that they can perform.
- This is the case e.g. in resource theories.

■ This choice is not unique. We could pick

Motivation

- Suppose one is studying scenarios where multiple parties cannot communicate, e.g. because of space-like separation.
- Then, it could be useful to understand what is the set of conceivable operations that they can perform.
- This is the case e.g. in resource theories.
- This choice is not unique. We could pick
i) The set of non-signalling resources.
ii) The set of common-cause realisable resources. each of which has its pros and cons.

Motivation

- Suppose one is studying scenarios where multiple parties cannot communicate, e.g. because of space-like separation.
- Then, it could be useful to understand what is the set of conceivable operations that they can perform.
- This is the case e.g. in resource theories.
- This choice is not unique. We could pick
i) The set of non-signalling resources.
ii) The set of common-cause realisable resources. each of which has its pros and cons.

In this work, we investigate the relation between the two options.

Outline

1 Preliminaries

- Generalized probabilistic theories (GPTs)
- Non-signalling channels
- Common-cause realizations

2 Setting up the problem

- Common-cause completions

3 Our construction

- Overview

4 Final remarks

Generalized probabilistic theories
(focus on compositionality)

Generalized probabilistic theories

 (focus on compositionality)*Causal, locally-tomographic

Compositional Structure

Symmetric monoidal category: diagrams

Compositional Structure

Symmetric monoidal category: diagrams

> Systems:
> $A_{A}|,|,||,$,
> $A \mid \|_{B}$

Compositional Structure

Symmetric monoidal category: diagrams
Systems:
Processes:

${ }_{A}|,|,||,$,
 $A \mid \|_{B}$

States:

Compositional Structure

Symmetric monoidal category: diagrams

Compositional Structure

Symmetric monoidal category: diagrams
Systems:
Processes:

$A_{A}|,|,||,$,
 $A \| B$

States:

Effects:
Convex structure:
食.두.두구

Compositional Structure

Symmetric monoidal category: diagrams

Systems:
$A_{A}|,|,||,$,
$A \| B$

Processes:

States:

Effects:
Convex structure:

$$
\hat{p} \cdot \bar{\gamma} \cdot \overline{\bar{\top}} \bar{\gamma}
$$

Compositional Structure

Complex Diagrams:
Mixtures Distribute:

Compositional Structure

Complex Diagrams:

Mixtures Distribute:

Example: Stoch

Real vector spaces, stochastic maps, tensor and matrix products:

$$
\mid=\mathbb{R}^{2}
$$

Example: Stoch

Real vector spaces, stochastic maps, tensor and matrix products:

$$
\mid=\mathbb{R}^{2}
$$

$$
\sqrt[s]{\sqrt{b}}=\binom{1 / 2}{1 / 2}
$$

Example: Stoch

Real vector spaces, stochastic maps, tensor and matrix products:

$$
\mid=\mathbb{R}^{2}
$$

$$
\stackrel{\downarrow}{\sqrt[s]{ }}=\binom{1 / 2}{1 / 2}
$$

$$
\overline{\bar{\top}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

Example: Stoch

Real vector spaces, stochastic maps, tensor and matrix products:

$$
\begin{aligned}
& =\mathbb{R}^{2} \\
& \stackrel{\downarrow}{\sqrt[s]{ }}=\binom{1 / 2}{1 / 2} \\
& \overline{\bar{\top}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
& \stackrel{|+|}{\stackrel{B}{B}}=\left(\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right)
\end{aligned}
$$

Example: Stoch

Real vector spaces, stochastic maps, tensor and matrix products:

$$
\begin{aligned}
& =\mathbb{R}^{2} \\
& \stackrel{\downarrow}{\sqrt[s]{ }}=\binom{1 / 2}{1 / 2} \\
& \overline{\bar{\top}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
& \underset{\mid A}{\stackrel{B}{f}}=\left(\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right) \\
& \underset{\substack{1 \\
\stackrel{5}{f}}}{\substack{1 \\
1 / 2}}=\left(\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 3
\end{array}\right)\binom{1 / 2}{1 / 2}
\end{aligned}
$$

Example: Stoch

Real vector spaces, stochastic maps, tensor and matrix products:

$$
\begin{aligned}
& =\mathbb{R}^{2} \\
& \sqrt[s]{d}=\binom{1 / 2}{1 / 2} \\
& \overline{\bar{\top}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
& \begin{array}{l}
\frac{B}{f} \\
\frac{B}{\mid A}
\end{array}=\left(\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right) \quad \begin{array}{l}
\square \\
\square \\
\sqrt[5]{7}
\end{array}=\left(\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right)\binom{1 / 2}{1 / 2} \\
& \sqrt[s]{\sqrt[s]{s}} \sqrt[s]{d}=\binom{1 / 2}{2 / 3} \otimes\binom{1 / 2}{1 / 2}
\end{aligned}
$$

Definition of Causal, Locally Tomographic GPT

With the composition rules in mind:

1 The SMC contains Stoch as a full subtheory.

Definition of Causal, Locally Tomographic GPT

With the composition rules in mind:

1 The SMC contains Stoch as a full subtheory.
2 There is a convex structure compatible with the one from Stoch.

Definition of Causal, Locally Tomographic GPT

With the composition rules in mind:

1 The SMC contains Stoch as a full subtheory.
2 There is a convex structure compatible with the one from Stoch.
3 There is a notion of tomography.

Definition of Causal, Locally Tomographic GPT

With the composition rules in mind:

1 The SMC contains Stoch as a full subtheory.
2 There is a convex structure compatible with the one from Stoch.

3 There is a notion of tomography.
4 There is a unique effect associated to each system type.

Definition of Causal, Locally Tomographic GPT

With the composition rules in mind:

1 The SMC contains Stoch as a full subtheory.
2 There is a convex structure compatible with the one from Stoch.

3 There is a notion of tomography.
4 There is a unique effect associated to each system type.
*This is the GPT equivalent of quantum theory with only CPTP maps

Definition of Causal, Locally Tomographic GPT

With the composition rules in mind:

1 The SMC contains Stoch as a full subtheory.
2 There is a convex structure compatible with the one from Stoch.

3 There is a notion of tomography.
4 There is a unique effect associated to each system type.
*This is the GPT equivalent of quantum theory with only CPTP maps

Let's discuss the last two points

Equality of processes

Tomography

Equality of processes

Tomography

$$
\begin{aligned}
& \text { Local Tomography }
\end{aligned}
$$

Equality of processes

Tomography

$$
\begin{aligned}
& \text { Local Tomography }
\end{aligned}
$$

*Equality by operational equivalence

Causality

Unique discarding effect

$$
\begin{gather*}
\overline{\bar{A}}, \\
\overline{\overline{A B B}}=\frac{\bar{A}}{=\bar{A} \bar{B}} \tag{3}
\end{gather*}
$$

Causality

Unique discarding effect

$$
\begin{gather*}
\overline{\overline{\bar{A}}}, \\
\overline{\overline{A T B}}=\overline{\bar{A}} \overline{\bar{A}} \overline{\overline{T_{B}}} \tag{3}
\end{gather*}
$$

Unique effect

$$
\begin{equation*}
\hat{\varphi}=\bar{\pi} \tag{4}
\end{equation*}
$$

Causality

Unique discarding effect

$$
\begin{gather*}
\overline{\bar{A}}, \\
\overline{\overline{A T B}}=\overline{\bar{A}} \overline{\overline{T_{B}}} \tag{3}
\end{gather*}
$$

Unique effect

$$
\begin{equation*}
\stackrel{\widehat{\mathrm{E}}}{\mid}=\overline{\bar{A}} \tag{4}
\end{equation*}
$$

Our probabilities come from inside the stochastic maps and state vectors

With the context of GPTs in mind, we can now define the notions of common-cause realisation and non-signalling.

Non-signalling channels

Intuition

We want to encode the impossibility of signalling diagramatically.

Intuition

We want to encode the impossibility of signalling diagramatically. Non-signalling from $A C$ to $B D$:

$$
\begin{equation*}
\frac{\overline{\bar{d} D^{D}}}{\stackrel{\Lambda}{\left.A l\right|_{B}}}=\overline{\bar{A}} \frac{D^{D}}{\Lambda_{B}} \tag{5}
\end{equation*}
$$

Intuition

We want to encode the impossibility of signalling diagramatically. Non-signalling from $A C$ to $B D$:

$$
\begin{equation*}
\frac{\overline{\left.\bar{d}\right|^{D}}}{\left.\stackrel{\Lambda}{A}\right|_{B}}=\overline{\bar{A}} \frac{\left.\right|^{D}}{\Lambda_{B}} \tag{5}
\end{equation*}
$$

since

Intuition

We want to encode the impossibility of signalling diagramatically. Non-signalling from $A C$ to $B D$:

$$
\begin{equation*}
\frac{\overline{\left.\bar{C}\right|^{D}}}{\stackrel{\Lambda}{A \mid I_{B}}}=\overline{\bar{A}}{ }_{A_{B}}^{\Lambda_{B}^{D}} \tag{5}
\end{equation*}
$$

since

A channel is NS if it can't signal between any two parties.

Definition: Multipartite case

Consider $B(M \mid K)$ are bipartitions of wires such as

Definition: Multipartite case

Consider $B(M \mid K)$ are bipartitions of wires such as

Then, Λ is non-signalling iff for all such bipartitions

Definition: Multipartite case

Consider $B(M \mid K)$ are bipartitions of wires such as

Then, Λ is non-signalling iff for all such bipartitions

Common-cause realization

Prototypical example

Bell scenario

Prototypical example

Bell scenario

The state s can be seen as a common-cause for the two measurements

Prototypical example

If we group the pieces,

Prototypical example

If we group the pieces,

Then ρ, M_{1}, M_{2} provide a common-cause decomposition of Λ.

Definition

Common-cause decomposition

Is a common-cause decomposition of Λ.

Definition

Common-cause decomposition

Is a common-cause decomposition of Λ. Note that this implies Λ is non-signalling.

If we don't have a common-cause decomposition, we can still ask whether it exists within some other theory.

If we don't have a common-cause decomposition, we can still ask whether it exists within some other theory.

GPT-common-cause realisable channel

If we don't have a common-cause decomposition, we can still ask whether it exists within some other theory.

GPT-common-cause realisable channel

$\Lambda \in \mathbf{G}$ is GPT-common-cause realisable iff there exists a theory such that

and the original theory \mathbf{G} is a full subtheory of the new one.

Interlude

What to keep in mind:

1 GPTs are abstract theories about experiments that assign probabilities to observations.

Interlude

What to keep in mind:

1 GPTs are abstract theories about experiments that assign probabilities to observations.
2 We work with a definition analogous to quantum theory with only CPTP maps.

Interlude

What to keep in mind:

1 GPTs are abstract theories about experiments that assign probabilities to observations.
2 We work with a definition analogous to quantum theory with only CPTP maps.

3 GPTs have a diagrammatic calculus.

Interlude

What to keep in mind:

1 GPTs are abstract theories about experiments that assign probabilities to observations.
2 We work with a definition analogous to quantum theory with only CPTP maps.
3 GPTs have a diagrammatic calculus.
4 We diagramatically define non-signalling with the discarding effect.

Interlude

What to keep in mind:

1 GPTs are abstract theories about experiments that assign probabilities to observations.
2 We work with a definition analogous to quantum theory with only CPTP maps.
3 GPTs have a diagrammatic calculus.
4 We diagramatically define non-signalling with the discarding effect.
5 We diagramatically define common-cause realisations with shared states.

The problem

Notice:

We know that:

- A bell correlation is not common-cause realisable in classical theory.

Notice:

We know that:

- A bell correlation is not common-cause realisable in classical theory.
- But it is common-cause realisable with quantum theory.

Notice:

We know that:

- A bell correlation is not common-cause realisable in classical theory.
- But it is common-cause realisable with quantum theory.

■ A PR-box correlation is not common-cause realisable in quantum theory.

Notice:

We know that:

- A bell correlation is not common-cause realisable in classical theory.
- But it is common-cause realisable with quantum theory.

■ A PR-box correlation is not common-cause realisable in quantum theory.

- But it is realisable in boxworld.

Notice:

We know that:

- A bell correlation is not common-cause realisable in classical theory.
- But it is common-cause realisable with quantum theory.
- A PR-box correlation is not common-cause realisable in quantum theory.
- But it is realisable in boxworld.

So we can say classical and quantum are not common-cause complete. Moreover, boxworld common-cause decomposes all non-signalling classical channels.

Notice:

We know that:

- A bell correlation is not common-cause realisable in classical theory.
- But it is common-cause realisable with quantum theory.

■ A PR-box correlation is not common-cause realisable in quantum theory.

- But it is realisable in boxworld.

So we can say classical and quantum are not common-cause complete. Moreover, boxworld common-cause decomposes all non-signalling classical channels.

Boxworld is a common-cause completion of classical theory.

Notice:

Notice that this examples are for correlations.

But in general, we can ask the same about resources, or channels in a theory.

Notice:

Notice that this examples are for correlations.

But in general, we can ask the same about resources, or channels in a theory.

So, we generalise that observation to formulate our problem.

The problem

We want to know whether:

- Given a causal, locally tomographic GPT G,

The problem

We want to know whether:
■ Given a causal, locally tomographic GPT G,

- We can always find another GPT G',

The problem

We want to know whether:
■ Given a causal, locally tomographic GPT G,

- We can always find another GPT G',

■ Such that for all non-signalling channels Λ in \mathbf{G},

The problem

We want to know whether:
■ Given a causal, locally tomographic GPT G,

- We can always find another GPT G',

■ Such that for all non-signalling channels Λ in \mathbf{G},

- Λ are common-cause realisable in \mathbf{G}^{\prime}.

In one sentence:

Can we always find a common-cause completion of a causal locally tomographic GPT?

In one sentence:

Can we always find a common-cause completion of a causal locally tomographic GPT?

Yes

Common-cause completions

We answer the question by providing a construction \mathcal{C} that takes a GPT G and outputs a GPT $\mathcal{C}[\mathbf{G}]$ that is a common-cause completion of \mathbf{G}.

We answer the question by providing a construction \mathcal{C} that takes a GPT G and outputs a GPT $\mathcal{C}[\mathbf{G}]$ that is a common-cause completion of \mathbf{G}.

Let's look at the basic idea of the construction.

Common-cause completions

A previous result ${ }^{1}$, guarantees we can always write

Where $\tilde{\xi}^{\wedge}$ is an (unphysical) affine combination of states from the GPT.
${ }^{1}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, and A. B. Sainz, Journal of Physics A: Mathematical and Theoretical (2022)

Common-cause completions

A previous result ${ }^{1}$, guarantees we can always write

Where $\tilde{\xi}^{\wedge}$ is an (unphysical) affine combination of states from the GPT.

Can we simply add them to the GPT? Not quite.
${ }^{1}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, and A. B. Sainz, Journal of Physics A: Mathematical and Theoretical (2022)

Common-cause completions

A previous result ${ }^{1}$, guarantees we can always write

Where $\tilde{\xi}^{\wedge}$ is an (unphysical) affine combination of states from the GPT.

Can we simply add them to the GPT? Not quite.
Why? Negative probabilities
${ }^{1}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, and A. B. Sainz, Journal of Physics A: Mathematical and Theoretical (2022)

If we can find a way to add processes $\tilde{\xi}^{\wedge}, \tilde{\eta}_{i}^{\wedge}$ to the GPT in a consistent way, then we can use that theorem to construct a common-cause completion.

Hint: The compositional rules in a GPT are given by the matching of system types.

Hint: The compositional rules in a GPT are given by the matching of system types.
So, let's instead add

and

Now, we can rewrite the theorem decomposition as

And we can't freely compose ξ^{\wedge} with other processes without going through η_{i}^{\wedge} first

Now, we can rewrite the theorem decomposition as

And we can't freely compose ξ^{\wedge} with other processes without going through η_{i}^{\wedge} first

This is the key idea of the construction.

From this starting point, the challenge is to guarantee all the compositional properties after the extension from \mathbf{G} to $\mathbf{G} \sqcup \eta$.

From this starting point, the challenge is to guarantee all the compositional properties after the extension from \mathbf{G} to $\mathbf{G} \sqcup \eta$.

1 Take the closure of $\mathbf{G} \sqcup \eta$ under \otimes and \circ.

- Denote the result $\overline{\mathbf{G} \sqcup \eta}$

From this starting point, the challenge is to guarantee all the compositional properties after the extension from \mathbf{G} to $\mathbf{G} \sqcup \eta$.

1 Take the closure of $\mathbf{G} \sqcup \eta$ under \otimes and \circ.

- Denote the result $\overline{\mathbf{G} \sqcup \eta}$

2 Take the closure of $\overline{\mathbf{G} \sqcup \eta}$ under convex combinations

- Denote the result $\operatorname{Conv}[\overline{\mathbf{G} \sqcup \eta}]$

From this starting point, the challenge is to guarantee all the compositional properties after the extension from \mathbf{G} to $\mathbf{G} \sqcup \eta$.

1 Take the closure of $\mathbf{G} \sqcup \eta$ under \otimes and \circ.

- Denote the result $\overline{\mathbf{G}} \sqcup \eta$

2 Take the closure of $\overline{\mathbf{G} \sqcup \eta}$ under convex combinations

- Denote the result Conv[$\overline{\mathbf{G} \sqcup \eta}]$

3 Quotient Conv[$\overline{\mathbf{G} \sqcup \eta}]$ under operational equivalence.

- Because we might have lost tomography
- Denote the result Conv[$\overline{\mathbf{G}} \sqcup \eta] / \sim$

From this starting point, the challenge is to guarantee all the compositional properties after the extension from \mathbf{G} to $\mathbf{G} \sqcup \eta$.

1 Take the closure of $\mathbf{G} \sqcup \eta$ under \otimes and \circ.

- Denote the result $\overline{\mathbf{G} \sqcup \eta}$

2 Take the closure of $\overline{\mathbf{G} \sqcup \eta}$ under convex combinations

- Denote the result Conv[$\overline{\mathbf{G} \sqcup \eta}]$

3 Quotient Conv[$\overline{\mathbf{G} \sqcup \eta}]$ under operational equivalence.

- Because we might have lost tomography
- Denote the result Conv[$\overline{\mathbf{G}} \sqcup \eta] / \sim$

Then, $\mathcal{C}[\mathbf{G}]=\operatorname{Conv}[\overline{\mathbf{G} \sqcup \eta}] / \sim$ should be a common-cause completion of G.

Each of those steps requires a proof that it guarantees the desired properties, and preserves the ones from previous steps

Each of those steps requires a proof that it guarantees the desired properties, and preserves the ones from previous steps

We prove that indeed $\mathcal{C}[\mathbf{G}]=\operatorname{Conv}[\overline{\mathbf{G} \sqcup \eta}] / \sim$ is a causal GPT and is a common-cause completion of \mathbf{G}.

Each of those steps requires a proof that it guarantees the desired properties, and preserves the ones from previous steps

We prove that indeed $\mathcal{C}[\mathbf{G}]=\operatorname{Conv}[\overline{\mathbf{G} \sqcup \eta}] / \sim$ is a causal GPT and is a common-cause completion of \mathbf{G}.

That leads us to our main result

Main result

Theorem V.1. Given a locally-tomographic causal GPT G, its set of multipartite non-signalling channels is the same as its set of multipartite common-cause realisable channels.

Main result

Theorem V.1. Given a locally-tomographic causal GPT G, its set of multipartite non-signalling channels is the same as its set of multipartite common-cause realisable channels.

Note these common-causes might not be state-preparations allowed in G.

Outlook

- We investigate the relation between the non-signalling channels and the GPT-common-cause realisable channels of causal, locally tomographic GPTs.

[^0]
Outlook

- We investigate the relation between the non-signalling channels and the GPT-common-cause realisable channels of causal, locally tomographic GPTs.
■ We show that, in fact, the two sets coincide.

[^1]
Outlook

- We investigate the relation between the non-signalling channels and the GPT-common-cause realisable channels of causal, locally tomographic GPTs.
■ We show that, in fact, the two sets coincide.
- This answers two open questions ${ }^{23}$.
- NS = GPT-CCC

[^2]
Outlook

- We investigate the relation between the non-signalling channels and the GPT-common-cause realisable channels of causal, locally tomographic GPTs.
- We show that, in fact, the two sets coincide.
- This answers two open questions ${ }^{23}$.
- NS = GPT-CCC
- There exists a GPT that realizes all non-signalling assemblages

[^3]
Outlook

■ We investigate the relation between the non-signalling channels and the GPT-common-cause realisable channels of causal, locally tomographic GPTs.
■ We show that, in fact, the two sets coincide.

- This answers two open questions ${ }^{23}$.
- NS = GPT-CCC
- There exists a GPT that realizes all non-signalling assemblages
- Our result provides a more principled reason to use the non-signalling channels as the enveloping theory in resource theories.

[^4]
Open Questions

1 We know $\mathcal{C}[\mathbf{G}]$ is causal, but is it locally tomographic?

Open Questions

1 We know $\mathcal{C}[\mathbf{G}]$ is causal, but is it locally tomographic?
2 Can we find a similar scheme for when \mathbf{G} is not locally tomographic?

The End

Thank you!

Take home message:
■ Non-signalling channels coincide with GPT-common-cause realisable channels in causal, locally tomographic GPTs.

- This provides a causal justification for using non-signalling channels as the enveloping theory in resource theories.

[^0]: ${ }^{2}$ D. Schmid, H. Du, M. Mudassar, G. Coulter-de Wit, D. Rosset, and M. J. Hoban, Quantum 5, 419 (2021)
 ${ }^{3}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, T. D. Galley, and A. B. Sainz, npj Quantum Information 8, 1 (2022)

[^1]: ${ }^{2}$ D. Schmid, H. Du, M. Mudassar, G. Coulter-de Wit, D. Rosset, and M. J. Hoban, Quantum 5, 419 (2021)
 ${ }^{3}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, T. D. Galley, and A. B. Sainz, npj Quantum Information 8, 1 (2022)

[^2]: ${ }^{2}$ D. Schmid, H. Du, M. Mudassar, G. Coulter-de Wit, D. Rosset, and M. J. Hoban, Quantum 5, 419 (2021)
 ${ }^{3}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, T. D. Galley, and A. B. Sainz, npj Quantum Information 8, 1 (2022)

[^3]: ${ }^{2}$ D. Schmid, H. Du, M. Mudassar, G. Coulter-de Wit, D. Rosset, and M. J. Hoban, Quantum 5, 419 (2021)
 ${ }^{3}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, T. D. Galley, and A. B. Sainz, npj Quantum Information 8, 1 (2022)

[^4]: ${ }^{2}$ D. Schmid, H. Du, M. Mudassar, G. Coulter-de Wit, D. Rosset, and M. J. Hoban, Quantum 5, 419 (2021)
 ${ }^{3}$ P. J. Cavalcanti, J. H. Selby, J. Sikora, T. D. Galley, and A. B. Sainz, npj Quantum Information 8, 1 (2022)

