Seungbeom Chin

Sungkyunkwan University \& ICTQT

18th of July, 2023

성균관대학교
SUNGKUUNKWAN UNVERSTVY(SKKU)

REFERENCES

- Chin, Seungbeom, Yong-Su Kim, and Sangmin Lee. "Graph picture of linear quantum networks and entanglement." Quantum 5 (2021): 611.
- Chin, Seungbeom, Yong-Su Kim, and Marcin Karczewski. "Shortcut to Multipartite Entanglement Generation: A Graph Approach to Boson Subtractions", arXiv preprint arXiv:2211.04042 (2022).
- Chin, Seungbeom, "From linear quantum system graphs to qubit graphs: Heralded generation of graph states", arXiv preprint, arXiv:2306.15148 (2023).

Overview

Entanglement generation with identical particles in linear quantum systems (LQSs)

- Particle indistinguishability + Spatial overlap \rightarrow Entanglement

Overview

Entanglement generation with identical particles in linear quantum systems (LQSs)

- Particle indistinguishability + Spatial overlap \rightarrow Entanglement

(Barros, SC, Pramanik, Lim, Cho, Huh, \& Kim, Optics Express, 2020)

Probabilistic entanglement generations w/bosons

Postselection

- Prearrangement on which state to "postselect"
- Requires detection of all states in the circuit, which will contain unwanted states
- In general, cannot be directly used as quantum gates

Heralding

- Employs ancillary single bosons and modes as "heralds" of the expected target states
- Allows for sorting out the experimental runs for the target states w / o measuring them
- needs more particles and modes, complicated to design

Bipartite case is OK, but...
QUESTION: LQSs $\stackrel{?}{\Longleftrightarrow} N$-partite entangled states

Bipartite case is OK, but...

QUESTION: LQSs $\stackrel{?}{\Longleftrightarrow} N$-partite entangled states

- Can we provide any systematic methodology to link the two sides?

Bipartite case is OK, but...
QUESTION: LQSs $\stackrel{?}{\Longleftrightarrow} N$-partite entangled states

- Can we provide any systematic methodology to link the two sides?

LQSs $\stackrel{\text { GRAPH }}{\Longleftrightarrow} N$-partite entangled states

Bipartite case is OK, but...
QUESTION: LQSs $\stackrel{?}{\Longleftrightarrow} N$-partite entangled states

- Can we provide any systematic methodology to link the two sides?

$$
\text { LQSs } \stackrel{G R A P H}{\Longleftrightarrow} N \text {-partite entangled states }
$$

- What we have done so far: found necessary conditions for LQSs to generate genuine entanglement and actually found several simple schemes

Bipartite case is OK, but...
QUESTION: LQSs $\stackrel{?}{\Longleftrightarrow} N$-partite entangled states

- Can we provide any systematic methodology to link the two sides?

LQSs $\stackrel{G R A P H}{\Longleftrightarrow} N$-partite entangled states

- What we have done so far: found necessary conditions for LQSs to generate genuine entanglement and actually found several simple schemes
- Our ultimate goal: Give a straightforward path to construct optimal LQSs that generate specific genuinely entangled states

Postselected schemes: SC, Y.S. Kim, \& S. Lee, Quantum 5 (2021), 611

Postselected schemes: SC, Y.S. Kim, \& S. Lee, Quantum 5 (2021), 611

Quantum circuits w/ PS

Heralded schemes: SC, Y.S. Kim, \& M. Karczewski, arXiv:2211.04042

Sculpting protocol

Sculpting Protocol

- M. Karczewski et al., PRA 100, 033828 (2019) \rightarrow SC, Y.S. Kim, \& M. Karczewski, arXiv:2211.04042

Sculpting Protocol

- M. Karczewski et al., PRA 100, 033828 (2019) \rightarrow SC, Y.S. Kim, \& M. Karczewski, arXiv:2211.04042
(1) Initial state: We prepare the maximally symmetric state $\left|S y m_{N}\right\rangle$ of $2 N$ bosons, i.e., each boson has different states (either spatial or internal) with each other.

$$
\left|\operatorname{Sym}_{N}\right\rangle \equiv \prod_{j=1}^{N}\left(\hat{a}_{j, 0}^{\dagger} \hat{a}_{j, 1}^{\dagger}\right)|v a c\rangle
$$

Sculpting Protocol

- M. Karczewski et al., PRA 100, 033828 (2019) \rightarrow SC, Y.S. Kim, \& M. Karczewski, arXiv:2211.04042
(1) Initial state: We prepare the maximally symmetric state $\left|S y m_{N}\right\rangle$ of $2 N$ bosons, i.e., each boson has different states (either spatial or internal) with each other.

(2) Operation: We apply the sculpting operator \hat{A}_{N}

$$
\hat{A}_{N} \equiv \prod_{l=1}^{N} \hat{A}^{(l)} \equiv \prod_{l=1}^{N}\left(\sum_{j=1}^{N} \alpha_{j}^{(I)} \hat{a}_{j, \psi_{j}^{(I)}}\right)
$$

to the initial state $\left|S y m_{N}\right\rangle$. The sculpting operator must be set to extract one boson per mode (no-bunching restriction).

Sculpting Protocol

- M. Karczewski et al., PRA 100, 033828 (2019) \rightarrow SC, Y.S. Kim, \& M. Karczewski, arXiv:2211.04042
(1) Initial state: We prepare the maximally symmetric state $\left|S y m_{N}\right\rangle$ of $2 N$ bosons, i.e., each boson has different states (either spatial or internal) with each other.

(2) Operation: We apply the sculpting operator \hat{A}_{N}

$$
\hat{A}_{N} \equiv \prod_{l=1}^{N} \hat{A}^{(l)} \equiv \prod_{l=1}^{N}\left(\sum_{j=1}^{N} \alpha_{j}^{(I)} \hat{a}_{j, \psi_{j}^{(I)}}\right)
$$

to the initial state $\left|S y m_{N}\right\rangle$. The sculpting operator must be set to extract one boson per mode (no-bunching restriction).
(3) Final state: The final state $|\Psi\rangle_{f i n}=\hat{A}_{N}\left|S y m_{N}\right\rangle$ can be fully separable, partially separable, or genuinely entangled.

Bosonic systems \rightarrow Graphs

A very short glossary in graph theory

- Graph $G=(V, E)$: A collection of a vertex set V and an edge set E. Each edge can have a color and a weight.
- Bipartite graph (bigraph) $G_{b}=(U \cup V, E)$: Two disjoint vertex sets $U \& V$. Edges connect U and $V . G_{b}$ is balanced if $|U|=|V|\left(G_{b b}\right)$
- Perfect matching (PM) in $G_{b b}$: One-to-one connection between U and V
- A balanced bigraph $G_{b b}$ can always be drawn as a directed graph (digraph) G_{d}

Bosonic systems \rightarrow Graphs

A very short glossary in graph theory

- Graph $G=(V, E)$: A collection of a vertex set V and an edge set E. Each edge can have a color and a weight.
- Bipartite graph (bigraph) $G_{b}=(U \cup V, E)$: Two disjoint vertex sets $U \& V$. Edges connect U and $V . G_{b}$ is balanced if $|U|=|V|\left(G_{b b}\right)$
- Perfect matching (PM) in $G_{b b}$: One-to-one connection between U and V
- A balanced bigraph $G_{b b}$ can always be drawn as a directed graph (digraph) G_{d}

Fundamental elements of bosonic systems

- Boson creation/annihilation operators
- Spatial modes (subsystems)
- Dynamical relations b/w particles and modes

Linear quantum system (LQS)	Directed bipartite Graph $G_{t}=(U \cup V, E)$
Spatial modes	Labelled vertices $i(\in U$
Creation operators	Unlabelled vertices $(\bullet \in V) \mathrm{w} /$ incoming edges
Annihilation operators	Unlabelled vertices $(\bullet \in V) \mathrm{w} /$ outgoing edges
Spatial distributions of operators	Directed edges $\in E$
Probability amplitude $\alpha_{j}^{(I)}$	Edge weight $\alpha_{j}^{(I)}$
Internal state $\psi_{j}^{(I)}$	Edge weight $\psi_{j}^{(I)}$ (sometimes replaced with colors)

($\mathrm{N}=2$ example)

Postselected schemes (w/o Annihilation operators)

SC, Y.S. Kim, \& S. Lee, Quantum 5 (2021): 611.

Linear quantum system (LQS)	Bipartite Graph $G_{b}=\left(U \cup V_{c}, E\right)$
Spatial modes	Labelled vertices $\in U$
Creation operators	Unlabelled vertices $\in V_{c}$
Spatial distributions of creation operators	Edges $\in E$
Probability amplitude $\alpha_{j}^{(I)}$	Edge weight $\alpha_{j}^{(I)}$
Internal state $\in\{\|0\rangle,\|1\rangle\}$	Edge color $\in\{$ Blue, Red $\}$
Final states w/PS	Perfect matchings (PMs)

Postselected schemes (w/o AnNihilation operators)

SC, Y.S. Kim, \& S. Lee, Quantum 5 (2021): 611.

Linear quantum system (LQS)	Bipartite Graph $G_{b}=\left(U \cup V_{c}, E\right)$
Spatial modes	Labelled vertices $\in U$
Creation operators	Unlabelled vertices $\in V_{c}$
Spatial distributions of creation operators	Edges $\in E$
Probability amplitude $\alpha_{j}^{(I)}$	Edge weight $\alpha_{j}^{(I)}$
Internal state $\in\{\|0\rangle,\|1\rangle\}$	Edge color $\in\{$ Blue, Red $\}$
Final states w/PS	Perfect matchings (PMs)

Example: $N=2$ Bell state generation

DEFINITION

For a given G_{d}, we define a "perfect matching digraph" (PM digraph, \bar{G}_{d}) of the G_{d} as a directed subgraph in which only the loops and the edges included in the elementary cycles of the G_{d} are retained.

Postselected schemes: PM DIGRAPH AND SEPARABILITY

Definition

For a given G_{d}, we define a "perfect matching digraph" (PM digraph, \bar{G}_{d}) of the G_{d} as a directed subgraph in which only the loops and the edges included in the elementary cycles of the G_{d} are retained.

Theorem 1

If an LQS generates a genuinely entangled no-bunching final state,
i) each vertex in the \bar{G}_{d} must have more than two incoming edges of different colors
ii) all the vertices in it are strongly connected to each other (strong connection of $\left(w_{i}, w_{j}\right)$: we can move from w_{i} toward w_{j} and from w_{j} toward w_{i})

Postselected schemes: PM DIGRAPH AND SEPARABILITY

Definition

For a given G_{d}, we define a "perfect matching digraph" (PM digraph, \bar{G}_{d}) of the G_{d} as a directed subgraph in which only the loops and the edges included in the elementary cycles of the G_{d} are retained.

Theorem 1

If an LQS generates a genuinely entangled no-bunching final state,
i) each vertex in the \bar{G}_{d} must have more than two incoming edges of different colors
ii) all the vertices in it are strongly connected to each other (strong connection of $\left(w_{i}, w_{j}\right)$: we can move from w_{i} toward w_{j} and from w_{j} toward w_{i})

PM digraph

$$
\begin{aligned}
& \left|\Psi_{\text {fin }}\right\rangle \\
& =\left[T_{11} T_{33} T_{44}\left|\downarrow_{1} \uparrow_{4}\right\rangle+T_{14}\left(T_{41} T_{33}+T_{43} T_{31}\right)\left|\uparrow_{1 \downarrow \downarrow}\right\rangle\right] \\
& \quad \otimes\left|\uparrow_{3}\right\rangle \otimes\left[T_{22} T_{55}\left|\downarrow_{2} \uparrow_{5}\right\rangle+T_{25} T_{52}\left|\uparrow_{2} \downarrow_{5}\right\rangle\right] .
\end{aligned}
$$

Postselected schemes: From \bar{G}_{d} to genuinely entangled states

- The above theorem is powerful for desigining an LQS for a specific genuinely entangled state
- Examples: GHZ, W, Dicke, Star network graph states, etc.

GHZ

w

w

Sculpting schemes (w/o CREATION OPERATORS)

SC, Y.S. Kim, \& M. Karczewski, arXiv:2211.04042

Boson systems with sculpting operators	Bipartite Graph $G_{b}=\left(U \cup V_{a}, E\right)$
Spatial modes	Labelled vertices $\in U$
$\hat{A}^{(I)}(I \in\{1,2, \cdots, N\})$	Unlabelled vertices $\in V_{a}$
Spatial distributions of $\hat{A}^{(I)}$	Edges $\in E$
Probability amplitude $\alpha_{j}^{(I)}$	Edge weight $\alpha_{j}^{(I)}$
Internal state $\psi_{j}^{(I)}$	Edge weight $\psi_{j}^{(I)}$

$$
\hat{A}_{2}=\hat{A}^{(2)} \hat{A}^{(1)}=\left(\beta_{1} \hat{a}_{1, \phi_{1}}+\beta_{2} \hat{a}_{2, \phi_{2}}\right)\left(\alpha_{1} \hat{a}_{1, \psi_{1}}+\alpha_{2} \hat{a}_{2, \psi_{2}}\right)=
$$

Property 1: No-bunching restriction in the graph picture

For a sculpting bigraph to \hat{A}_{N}, the probability amplitude weights are restricted so that only the perfect matchings (PMs) contribute to the final state $|\Psi\rangle_{\text {fin }}=\hat{A}_{N}\left|S_{y m}\right\rangle$.

SCULPTING SCHEMES

Property 1: No-bunching restriction in the graph picture

For a sculpting bigraph to \hat{A}_{N}, the probability amplitude weights are restricted so that only the perfect matchings (PMs) contribute to the final state $|\Psi\rangle_{\text {fin }}=\hat{A}_{N}\left|S y m_{N}\right\rangle$.
($N=2$ example)
Setting $\hat{A}_{2}=\hat{A}^{(1)} \hat{A}^{(2)}=\frac{\left(\hat{a}_{1+}+\hat{a}_{2-}\right)}{\sqrt{2}} \frac{\left(\hat{a}_{2+}+\hat{a}_{1-}\right)}{\sqrt{2}} \quad\left(| \pm\rangle=\frac{|0\rangle \pm|1\rangle}{\sqrt{2}}\right)$,

$$
\left.\left.=\frac{1}{2}\left(\hat{a}_{1+}^{\dagger} \hat{a}_{2+}^{\dagger}+\hat{a}_{1-}^{\dagger} \hat{a}_{2-}^{\dagger}\right) \right\rvert\, \text { vac }\right\rangle \quad \text { (Bell state) }
$$

$($ Black $=|0\rangle$, Dotted $=|1\rangle$, Red $=|+\rangle$, Blue $=|-\rangle)$

SCULPTING SCHEMES

(Definition) An effective PM (EPM) bigraph is a bigraph whose edges always attach to the circles as one of the following forms:

(Solid Black $=|0\rangle$, Dotted Black $=|1\rangle$, Red $=|+\rangle$, Blue $=|-\rangle$),

Property 2

If a sculpting operator is represented as an effective PM bigraph, then the final state is always fully determined by the PMs of the bigraph (the converse is not true)

Sculpting schemes

(Definition) An effective PM (EPM) bigraph is a bigraph whose edges always attach to the circles as one of the following forms:

(Solid Black $=|0\rangle$, Dotted Black $=|1\rangle$, Red $=|+\rangle$, Blue $=|-\rangle$),

Property 2

If a sculpting operator is represented as an effective PM bigraph, then the final state is always fully determined by the PMs of the bigraph (the converse is not true)

Theorem 2

If an EPM bigraph generates multipartite genuine entanglement, its \bar{G}_{d} satisfies the two conditions of Thm 1

Sculpting schemes: From \bar{G}_{d} to genuinely entangled states

GHZ

w

(red: $\tilde{0}$, blue: $\tilde{2}$)
Qudit GHZ

Superposition of $\mathrm{N}=3 \mathrm{GHZ}$ and W

Sculpting schemes: From LQS graphs to qubit graphs

SC, "From linear quantum system graphs to qubit graphs: Heralded generation of graph states", arXiv:2306.15148.

- Graph state: $G=(V, E) \leftrightarrow$ (qubit, $\left.U^{Z}\right)$
where $U^{Z}|i j\rangle=(-1)^{i j}|i j\rangle$ (Controlled Z gate), e.g.,

$$
\bullet=U_{12}^{z}|++\rangle=|00\rangle+|01\rangle+|10\rangle-|11\rangle
$$

Sculpting schemes: From LQS graphs to qubit graphs

SC, "From linear quantum system graphs to qubit graphs: Heralded generation of graph states", arXiv:2306.15148.

- Graph state: $G=(V, E) \leftrightarrow$ (qubit, $\left.U^{Z}\right)$
where $U^{Z}|i j\rangle=(-1)^{i j}|i j\rangle$ (Controlled Z gate), e.g.

$$
\bigcirc=U_{12}^{Z}|++\rangle=|00\rangle+|01\rangle+|10\rangle-|11\rangle
$$

- Caterpillar graphs: Tree graphs in which every vertex is on a central path or one edge away from the path, e.g.,

Sculpting schemes: From LQS graphs to qubit graphs

SC, "From linear quantum system graphs to qubit graphs: Heralded generation of graph states", arXiv:2306.15148.

- Graph state: $G=(V, E) \leftrightarrow\left(\right.$ qubit, $\left.U^{Z}\right)$
where $U^{Z}|i j\rangle=(-1)^{i j}|i j\rangle$ (Controlled Z gate), e.g.,

$$
-U_{12}^{Z}|++\rangle=|00\rangle+|01\rangle+|10\rangle-|11\rangle
$$

- Caterpillar graphs: Tree graphs in which every vertex is on a central path or one edge away from the path, e.g.,

- We can generate any caterpillar graph state with EPM digraphs

SCULPTING SCHEMES: LINEAR OPTICAL HERALDED SCHEMES

- $N=2$ Bell state example

$$
\Downarrow \quad\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\} \rightarrow\{|H\rangle,|V\rangle,|D\rangle,|A\rangle\}
$$

Sculpting schemes: Linear optical heralded schemes

- $N=2$ Bell state example

$\Downarrow\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\} \rightarrow\{|H\rangle,|V\rangle,|D\rangle,|A\rangle\}$

- Transformation rules from a sculpting bigraph to an optical scheme (in preparation)

DISCUSSIONS

Theory/Foundation

Post-quantum identical particles

Graph mapping of LQSs

Experiment/Application

Multipartite qubit/qudit gate generation of identical particles

Finding schemes for other types of entanglement (Graph states, k-uniform
states, higher-dimensional entangled states ...)

- Physical heralded scheme designs + Experiments
- Sculpting schemes to generate other types of entanglement
- Directed bigraphs $\Longleftrightarrow X Z$ calculus
- Graph-based post-quantum theory of identical particles

Thank you!

- Chin, Seungbeom, Yong-Su Kim, and Sangmin Lee. "Graph picture of linear quantum networks and entanglement." Quantum 5 (2021): 611.
- Chin, Seungbeom, Yong-Su Kim, and Marcin Karczewski. "Shortcut to Multipartite Entanglement Generation: A Graph Approach to Boson Subtractions", arXiv preprint arXiv:2211.04042 (2022).
- Chin, Seungbeom, "From linear quantum system graphs to qubit graphs: Heralded generation of graph states", arXiv preprint, arXiv:2306.15148 (2023).

