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What’s an IQP Circuit?

An Instantaneous Quantum Polynomial (IQP for short) can be
represented by
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Figure: Shape of a generic IQP circuit

Where D is made out of diagonal 2 qubits gates



What’s an IQP Circuit?

Precisely, D is made out of
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In the Clifford+T fragment, α = k π
2 and β = k π

4 for some
k ∈ {0, 1, 2, ..., 7}



Simplified Form
example
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Random IQP Families

Dense → Pick xi, yi,j uniformly at random i.i.d ∀i, j
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Sparse → same but every pair interact with probability λ ln(n)
n



Usefull Fact

When a phase gadget has a phase of 0 or π
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There is no gadget



Why Do We Care?

▶ "Easy" to implement on a NISQ computer
▶ Hard to classically simulate
▶ Supremacy experiments?



Runnable on NISQ Machine?

All the gates commute
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No time ordering ⇒ less noise

The sparse family can be compiled into a 2D lattice of depth
O(

√
n log(n))

Resilient to noise
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Hard to classically Simulate

▶ Efficient weak simulation (up to a
√

2 multiplicative error)
implies the collapse of PH

▶ Average case is hard to simulate within a small additive
error1 (implies the collapse of PH)

▶ even the sparse case is hard to simulate2

1Assuming some hardness conjecture about random polynomial over F2
2Assuming some conjecture about the ising model



Quantum Supremacy?

Good properties for quantum supremacy3

How good is the classical simulation?

Dense Sparse
Tensor contraction4 O(n2n) O(log n2n)

Stabiliser decomposition O(n32O(n2)) O(n log2 n2O(n log n))

3Or quantum inimitably
4Used state vector to get the bound
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Quantum Supremacy?

Good properties for quantum supremacy3

How good is the classical simulation?

Dense Sparse
Tensor contraction4 O(n2n) O(log n2n)

Stabiliser decomposition O(n32O(n2)) O(n log2 n2O(n log n))
Ours O( log2 n

n 2n) O
(

2n

poly(n)

)
Ours (improved) O

(
(log n)4−α

n2−α 2n
)

-

Where α ≈ 0.396

3Or quantum inimitably
4Using state vector



Background

The Algorithm

Improved Algorithm

Numerical Experiments

Conclusions

Possible Extension



Strong Simulation
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Note: IQPs have an efficient strong simulation → weak
simulation reduction
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Cutting a Qubit

α
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If we do this on all the qubits → O(n2n)



Idea

We do this until we are left with k disconnected spiders
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Interaction Graph

A vertex per qubit
An edge between two qubits if they interact non trivially

The maximum k is the size of the maximal independent set

It’s a random graph under the Erdős–Rényi model
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Erdős–Rényi model

Every edge is there with some (independent) probability p.

Dense → G(n, 3
4)

Sparse → G(n, 3γ ln(n)
4n )



Independent Set in Random Graphs

For dense graphs:

For sparse graphs (in our regime):



Independent Set in Random Graphs

For dense graphs:

Theorem (Matula, 1972)
For p ∈ (0, 1), α(G(n, p)) is tightly concentrated around
2 log1/(1−p) n

For sparse graphs (in our regime):



Independent Set in Random Graphs

For dense graphs:

Corollary
Let p ∈ (0, 1), b = 1

1−p then α(G(n, p)) ≥ 2 logb n − 2 logb(logb(n))
with high probability.

For sparse graphs (in our regime):



Independent Set in Random Graphs

For dense graphs:

Corollary
Let p ∈ (0, 1), b = 1

1−p then α(G(n, p)) ≥ 2 logb n − 2 logb(logb(n))
with high probability.
=⇒ k ≈ log2 n − log2 log2 n

For sparse graphs (in our regime):
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Independent Set in Random Graphs

For dense graphs: k ≈ log2 n − log2 log2 n =⇒ O
(

log2 n
n 2n

)

For sparse graphs (in our regime):
No direct theorem, but with a bit more work but we can prove

Theorem
There exists a constant C > 0 such that with high probability

α

(
G

(
n,

3γ ln(n)
4n

))
≥ C

n log log(n)
log(n) .



Independent Set in Random Graphs

For dense graphs: k ≈ log2 n − log2 log2 n =⇒ O
(

log2 n
n 2n

)

For sparse graphs (in our regime):
No direct theorem, but with a bit more work but we can prove

Theorem
There exists a constant C > 0 such that with high probability

α

(
G

(
n,

3γ ln(n)
4n

))
≥ C

n log log(n)
log(n) .

=⇒ O

(
n log log(n)

log(n) 2n
(

1− C log log(n)
log(n)

))



Independent Set in Random Graphs

For dense graphs: k ≈ log2 n − log2 log2 n =⇒ O
(

log2 n
n 2n

)

For sparse graphs (in our regime):

O

(
n log log(n)

log(n) 2n
(

1− C log log(n)
log(n)

))
(Which is faster than O(2n/poly(n))
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Why Did it Work?

▶ Instead of decomposing all the O(n2) T-gates, we got away
with O(n)

▶ We stopped early when we had an easy diagram left
▶ Offloaded the analysis to random graphs

Could we have stopped earlier?
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Non-Clifford Interaction Graph

Same a before but we only have edges between two qubits if
they interact by a non-Clifford phase gadget

Recall, we have

k π
2

k π
2

−k π
2

Dense → G(n, 1
2)

Sparse → G(n, γ ln(n)
2n )



Finish with general Stabiliser decomposition

Left with a non trivial ZX-diagram with O(n) T-gates.

We use general stabiliser decomposition

Dense → O
(

(log n)4−α

n2−α 2n
)
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Benchmarks

Basic algorithm implemented in Rust
https://github.com/Codsilla/iqp-sim-independent-set

Single-threaded on a consumer laptop (Intel Core i7-10750H
CPU 2.60GHz)

Based on the average of 100 instances

https://github.com/Codsilla/iqp-sim-independent-set


Benchmarks

It fits remarkably well to an exponential fit c2βn where β ranges
from 0.93 to 0.53.



Take Away / Conclusion

▶ Polynomial speedups
▶ Works well in practice
▶ Highly parallelizable

Are IQPs really a good idea for supremacy?



Extensions

Looking at other graphs properties

Ex: Maximal induced planar subgraph guarantees good network
splicing. It can be evaluated in Õ(2

√
n)



Thank you for your attention!

Codsi, J. and van de Wetering, J. (2023). Classically simulating
quantum supremacy iqp circuits through a random graph
approach
https://arxiv.org/abs/2212.08609

https://arxiv.org/abs/2212.08609
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