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Outline

The ZX-calculus

Graphical linear/affine algebra and the ZX-calculus

Graphical affine Lagrangian algebra and stabilizer circuits
[Comfort and Kissinger, 2022]

Graphical affine coisotropic algebra and stabilizer codes
[Comfort, 2023]



The ZX-calculus “splits the atom”

The ZX-calculus decomposes quantum circuits into smaller
components. Consider the controlled-X gate:
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“ Splitting the attom ”
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These components are no longer circuits, but they are useful.



Spider fusion and Hopf law

Spider fusion: Bialgebra: Hopf law:
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Where + ?\J} is the antipode




Interpreting the ZX-calculus

The d dimensional qudit (pure) ZX-caculi fare a family of
graphical languages for d” x d™ dimensional complex matrices.

There are two familiesﬁof generators, Z and X spiders,
decorated by phases 6 = (0,64,0s,...,04_1) € [0,27)“:
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Terminology:

qudit — qubit when d = 2.
qudit — quopit when is an d odd prime.



Fragments of the ZX-calculus
Fragments of the ZX-calculus have restricted phases:

Example
The qudit phase-free fragment ZX-calculus has trivial angles:

The qubit stabilizer fragment has Z/X angles in:
{(0,0),(0,7/2),(0,),(0,27/3)} C [0, 2m)?
The quopit stabilizer fragment has Z/X angles in:
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Linear relations

Definition

Given a field k there is a prop LinRely of linear relations,

whose maps n — m are linear subspaces of k" @& k™ under

relational composition: For S C k" @ k™ and R C k™ @ k*
S;R:={(x,z) e kK"® k* 3y € kK™ : (x,y) € SA(y,z) € R}

Lemma

LinRely is generated by two spiders, scalars (+ equations):
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Lemma ([Zanasi, 2018])
LinRelr, is isomorphic to the p-dimensional qupit phase-free
ZX-calculus modulo scalars.

Proof.

A phase free ZX-diagram D is identified with its X stabilizers:
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Example: part i

Find the ay, a0, as, by, bo, by which satisfy:




Example: part i

Find the ay, a0, as, by, bo, by which satisfy:
bi|  bs| bs

:a1:a2:b1 a1+33=b2+b3
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These equations determine a linear subspace of Ff; ® Ff,:
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What about the Z stabilizers?

The Fourier transform of a ZX-diagram is the colour swapping:

In the phase-free ZX-calculus, this corresponds to the
orthogonal complement of linear subspaces:

(L)* : LinRelg, — LinRelg,;
(SCF)) — ({veFivwe S,viw =0} CFp)

So we can also identify phase-free ZX-diagrams D with their Z
stabilizers [D] z:

[D]z = [Dly



Example: part ii
Recall how we calculated the X stabilizers:
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Affine relations
Definition ([Bonchi et al., 2019])

There is a prop AffRel, of affine relations, but now the
morphisms are (possibly empty) affine subspaces of k" ¢ k™.

Lemma
AffRely is presented by decorating the grey spiders of LinRely
with all elements ¢ € k:
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Modulo even more equations.



X-phase fragment of ZX and affine relations
The X gate is a phase:

=@, where § = (0ar/p,1ar/p,2ar/p,...,(p— 1)ar/p)

So consider the phase-free+X fragment of the ZX-calculus.

Theorem
AffRelr, is isomorphic to the p-dimensional qudit phase free+X
ZX-calculus gate modulo scalars.

Proof.
The affine shift and X-gate have the same effect on X
stabilizers.
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Example: part iii
What are the ay, az, az, by, be, by € Fp which satisfy:




Example: part iii
What are the ay, az, az, by, bo, by € Fp which satisfy:




Example: part iii
What are the ay, az, az, by, bo, by € Fp which satisfy:

We can translate this into affine relations:
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Adding Z and X gates to the picture

We can combine the Z and X-stabilizers in the same picture.

The phase-free circuits are doubled linear relations:
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And add both the Z and X gates at once:
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The Z/X gates shift the Z/ X stabilizers:
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This captures the phase-free+Z+X fragment of the ZX calculus



Example: part iv
Consider the interpretation of this ZX diagram:
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The Z and X stabilizers don’t interact with each other for
phase-free+Z+X circuits...



Getting all stabilizer circuits
We can add the phase-shift gates to the picture:

Theorem ([Comfort and Kissinger, 2022])
Quopit stabilizer circuits are generated by the affine relations:

The white spider has the following interpretation in Matc:

\erfr/(nﬂrmlz)/l’“ D5l

The interpretation of the grey spider is analogous.



“Splitting the atom” x2

The Fourier transform is derived by Euler composition:

And the Euler decomposition is derived from the Hopf law!



Symplectic algebra and Weyl operators
Definition
Given (zy,...,2n,X1, ..., Xn) € F3", there is a Weyl operator:
® ZiX7.ch—C"
The symplectic form w : IF}’;” & F2" — Fp takes

() () e7w v

This form captures the commutation of Weyl operators:

W(Z, X)W(ZI, X/) _ e-i-Tr-ou((Z,X),(z/7x/))/p)/v(zl7 X/)W(Z, X)



Stabilizer circuits are affine Lagrangian relations
Definition
Lagrangian subspaces are linear subspaces V C IF,%” st:
V=V:={veF|vw e V,w(v,w) =0}

These are linear subspaces of IF,%” where all elements commute
wrt the symplectic form.

The two spiders we mentioned actually generate the prop
AffLagRelr, of affine Lagrangian relations over Fp:

The view of stabilizer states in terms of affine Lagrangian
subspaces acted on by reversible transformations with
measurement statistics was shown in [Calderbank et al., 1998,
Gross, 2006, Catani and Browne, 2017, De Beaudrap, 2013]



Mixed stabilizers
The complex conjugation is given by

(L) : AffLagRelr, — AffLagRelr,;

Mixed stabilizer circuits are constructed by doubling stabilizer
circuits S:

The quantum discard is the cap: HT H = /O\

Formally this is taking o
CPM(AffLagRelr,, (_)) = CPM(Stabp, (_))/ ~



Stabilizer codes

Definition
There is a category of affine coisotropic relations
AffColsotRelr, whose morphisms n — m are affine subspaces

L+aC F3""™ such that L« C L
(relaxed from affine Lagrangian subspaces where [¥ = L)

Proposition ([Comfort, 2023])
AffColsotRelr, is presented by adding the discard relation to
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Theorem ([Comfort, 2023])
AffColsotRelr, = CPM(AffLagRelr,) = CPM(Stabp)/ ~

The quantum discard is the discard relation!
(reminiscent of [Carette et al., 2021])



Measurement

The Z and X projectors look as follows:
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By splitting the X projector, following [Selinger, 2008], we get
state preparation and measurement relations:
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Possible outcomes of Pauli measurements of stabilizer states
are equally likely.



Quantum teleportation by spider fusion

Alice 5 Bob

Phase correction

Measurement --O-

(this also works for qubits)



Maps between stabilizer codes

This is a 2-category with respect to subspace inclusion:

Example

All stabilizers for the identity channel are stabilizers for the
Z/ X-projectors:

Example
All stabilizers for |0) are stabilizers for the maximally mixed

el L



Error correction example: repetition code
Consider the Linear subspace:
S ={((z1, 22, z3). (%1, %2, X3))|x1 = xp = x5} C F5°)

Which can be written in the form of a circuit:
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In the undoubled picture this looks like:



Recall S is coisotropic if S¥ C S:
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Moreover S C IF has dimension3+1 =4

Chopping off the maximally mixed state gives us an encoding

map IE‘2(1) — IE‘2(3)

That is, this is a qubit [3, 1]-stabilizer code.
Encodes 1 logical qubit into 3 physical qubits.



Suppose there is a Pauli error W((a, b, ¢),(d, e, f)), then we
have the following error detection circuit:

Bob Syndrome

Nondestructive
measurement

-----------------------------




Suppose we want to correct for single pauli X errors, then we
find that:

X error (d, e, f) = (1,0,0) syndrome (e +d,f+d) =(1,1)
X error (d, e, f) = (0,1,0) syndrome (e+d,f+ d) =(1,0)
X error(d, e, f) = (0,0,1) syndrome (e + d, f+ d) = (0,1)
X error (d, e, f) = (0,0,0) syndrome (e + d,f + d) = (0,0)

Therefore, we want to apply the correction

F3 — F23); (s, 1) — ((0,0,0), (st, s(t + 1), (s + 1)t) )



The error correction protocol then has the following form:
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Bob where g := d + (e + d)(f + d)

=e+(e+d)(f+d+1)
=f+(e+d+1)(f+d)
= de + ef + fd



If there is at most one X error, then g = de + ef + fd = 0.

If furthermore, there are no Z errors:
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Problems

The and gate isn’'t an affine subspace, so it doesn't live in
affine coisotropic relations.

Using this formalism we can only correct for errors with
affine post-processing.

This works for all odd prime qudit stabilizer codes, but only
phase-free qubit stabilizer codes (CSS codes)+Z+X gates
(no Fourier transform of phase shift)

Future work

Find nice semantics for stabilizer codes with nonlinear
classical post-processing.

Undoubled completeness for arbitrary field (following
[Booth and Carette, 2022, Poér et al., 2023])

Extending this work to optics/electrical circuits...
Code distance.
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