The Algebra for Stabilizer Codes

Cole Comfort

University of Oxford
July 21, 2023

ArXiv: 2304.10584

Outline

The ZX-calculus

Graphical linear/affine algebra and the ZX-calculus

Graphical affine Lagrangian algebra and stabilizer circuits [Comfort and Kissinger, 2022]

Graphical affine coisotropic algebra and stabilizer codes [Comfort, 2023]

The ZX-calculus "splits the atom"

The ZX-calculus decomposes quantum circuits into smaller components. Consider the controlled- X gate:

"Splitting the attom "

These components are no longer circuits, but they are useful.

Spider fusion and Hopf law

Spider fusion:
Bialgebra: Hopf law:

Where $\dagger=9$ is the antipode

Interpreting the ZX-calculus

The d dimensional qudit (pure) ZX-caculi fare a family of graphical languages for $d^{n} \times d^{m}$ dimensional complex matrices.
There are two families of generators, Z and X spiders, decorated by phases $\vec{\theta}=\left(0, \theta_{1}, \theta_{2}, \ldots, \theta_{d-1}\right) \in[0,2 \pi)^{d}$:

$$
\begin{aligned}
& \|\left(\begin{array}{c}
\left(\begin{array}{l}
\because \\
\cdots \\
\stackrel{\theta}{\theta} \\
\ddot{n}
\end{array}\right]
\end{array}\right]=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} e^{i \theta_{j}}|j, \ldots, j\rangle\langle j, \ldots, j| \\
& {\left[\left(\begin{array}{c}
\underset{m}{\because} \\
\underset{\ddot{\theta}}{(}) \\
\cdots
\end{array}\right]=\frac{1}{\sqrt{d}} \mathcal{F}^{\dagger} \sum_{j=0}^{d-1} e^{i \theta_{j}}|j, \ldots, j\rangle\langle j, \ldots, j| \mathcal{F}\right.}
\end{aligned}
$$

Terminology:
qudit \rightarrow qubit when $d=2$.
qudit \rightarrow quopit when is an d odd prime.

Fragments of the ZX-calculus

Fragments of the ZX-calculus have restricted phases:

Example

The qudit phase-free fragment ZX-calculus has trivial angles:

The qubit stabilizer fragment has Z / X angles in:

$$
\{(0,0),(0, \pi / 2),(0, \pi),(0,2 \pi / 3)\} \subseteq[0,2 \pi)^{2}
$$

The quopit stabilizer fragment has Z / X angles in:

$$
\left\{\prod_{j=0}^{p-1}\left(n \cdot j+m \cdot j^{2}\right) \pi / p \mid \forall n, m \in \mathbb{F}_{p} \cong \mathbb{Z} / p \mathbb{Z}\right\} \subseteq[0,2 \pi)^{p}
$$

Linear relations Definition

Given a field k there is a prop LinRel ${ }_{k}$ of linear relations, whose maps $n \rightarrow m$ are linear subspaces of $k^{n} \oplus k^{m}$ under relational composition: For $S \subseteq k^{n} \oplus k^{m}$ and $R \subseteq k^{m} \oplus k^{\ell}$ $S ; R:=\left\{(x, z) \in k^{n} \oplus k^{\ell} \mid \exists y \in k^{m}:(x, y) \in S \wedge(y, z) \in R\right\}$
Lemma
LinRel $_{\mathrm{k}}$ is generated by two spiders, scalars (+ equations):

Lemma ([Zanasi, 2018])

$\mathrm{LinRe}_{\mathbb{F}_{\mathrm{p}}}$ is isomorphic to the p-dimensional qupit phase-free ZX-calculus modulo scalars.

Proof.

A phase free $Z X$-diagram D is identified with its X stabilizers:

$$
\begin{aligned}
& \llbracket\left(\begin{array}{c}
\left(\begin{array}{l}
m \\
n \\
\square \\
\cdots
\end{array}\right)
\end{array} \|_{X}:=\right.
\end{aligned}
$$

Example: part i

Find the $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ which satisfy:

Example: part i

Find the $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ which satisfy:

These equations determine a linear subspace of $\mathbb{F}_{p}^{3} \oplus \mathbb{F}_{p}^{3}$:

$$
\}_{x}=\left\{\left.\left(\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right),\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)\right) \right\rvert\, a_{1}=a_{2}=b_{1} \wedge a_{1}+a_{3}=b_{2}+b_{3}\right\}
$$

What about the Z stabilizers?

The Fourier transform of a ZX-diagram is the colour swapping:

In the phase-free ZX-calculus, this corresponds to the orthogonal complement of linear subspaces:

$$
\begin{gathered}
\left(_\right)^{\perp}: \operatorname{LinRel}_{\mathbb{F}_{\mathrm{p}}} \rightarrow \operatorname{LinRel}_{\mathbb{P}_{\mathrm{p}}} ; \\
\left(S \subseteq \mathbb{F}_{p}^{n}\right) \mapsto\left(\left\{v \in \mathbb{F}_{p}^{n} \mid \forall w \in S, v^{\top} w=0\right\} \subseteq \mathbb{F}_{p}^{n}\right)
\end{gathered}
$$

So we can also identify phase-free ZX -diagrams D with their Z stabilizers $\llbracket D \rrbracket_{z}$:

$$
\llbracket D \rrbracket_{z}=\llbracket D \rrbracket_{X}^{\perp}
$$

Example: part ii

Recall how we calculated the X stabilizers:

For Z stabilizers, find X stabilizers of the Fourier transform:

Affine relations

Definition ([Bonchi et al., 2019])
There is a prop AffRel ${ }_{k}$ of affine relations, but now the morphisms are (possibly empty) affine subspaces of $k^{n} \oplus k^{m}$.

Lemma
AffRel $_{k}$ is presented by decorating the grey spiders of LinRel $_{k}$ with all elements $c \in k$:

with the interpretation:

$$
\llbracket\left(\begin{array}{c}
\cdots \\
\cdots \\
\cdots
\end{array}\right] \|=\left\{\left.\left(\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right),\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)\right) \right\rvert\, \forall a_{i}, b_{j} \in k: c+\sum a_{i}=\sum b_{j}\right\}
$$

Modulo even more equations.

X-phase fragment of ZX and affine relations

The X gate is a phase:
$\frac{1}{X^{a}}=\stackrel{\text { ® }}{\theta}$, where $\vec{\theta}=(0 a \pi / p, 1 a \pi / p, 2 a \pi / p, \ldots,(p-1) a \pi / p)$
So consider the phase-free+X fragment of the ZX-calculus.
Theorem
AffRel $_{\mathbb{F}_{\mathcal{P}}}$ is isomorphic to the p-dimensional qudit phase free $+X$ $Z X$-calculus gate modulo scalars.
Proof.
The affine shift and X-gate have the same effect on X stabilizers.

$$
x^{a}=\sum_{x=0}^{p-1}|x+a\rangle\langle x|, \quad \llbracket\left(\begin{array}{l}
9 \\
\hline
\end{array}\right]=\{(x, x+a)\}
$$

Example: part iii

What are the $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{F}_{p}$ which satisfy:

Example: part iii

What are the $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{F}_{p}$ which satisfy:

We can translate this into affine relations:

Example: part iii

What are the $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{F}_{p}$ which satisfy:

We can translate this into affine relations:

Adding Z and X gates to the picture

We can combine the Z and X-stabilizers in the same picture.
The phase-free circuits are doubled linear relations:

And add both the Z and X gates at once:

$$
\llbracket \stackrel{(}{9}\left|\rrbracket_{\text {Matc } / \sim}=Z^{a} \quad \llbracket\right| \left\lvert\, \begin{array}{|c}
\text { @ }
\end{array} \rrbracket_{\text {Mat }_{c} / \sim}=X^{a}\right.
$$

The Z / X gates shift the Z / X stabilizers:
$\|\left(\frac{1}{\mid}\left|\left\|_{z, X}=\left\{\left(\binom{z}{x},\binom{z+a}{x}\right)\right\},\right\|\right| \begin{array}{|c}\text { a }\end{array} \|_{z, X}=\left\{\left(\binom{z}{x},\binom{z}{x+a}\right)\right\}\right.$
This captures the phase-free $+\mathbf{Z}+\mathbf{X}$ fragment of the ZX calculus

Example: part iv

Consider the interpretation of this ZX diagram:

The Z and X stabilizers don't interact with each other for phase-free $+Z+X$ circuits...

Getting all stabilizer circuits

We can add the phase-shift gates to the picture:
Theorem ([Comfort and Kissinger, 2022])
Quopit stabilizer circuits are generated by the affine relations:

The white spider has the following interpretation in Mat $\mathbb{C}_{\mathbb{C}}$:

$$
\llbracket\left(\begin{array}{l}
\left(\begin{array}{l}
\cdots \\
(n, m \\
\cdots
\end{array}\right)
\end{array} \|=\frac{1}{\sqrt{p}} \sum_{j=0}^{p-1} e^{\pi \cdot i\left(n \cdot j+m \cdot j^{2}\right) / p}|j, \ldots, j\rangle\langle j, \ldots, j|\right.
$$

The interpretation of the grey spider is analogous.

"Splitting the atom" $\times 2$

The Fourier transform is derived by Euler composition:

And the Euler decomposition is derived from the Hopf law!

Symplectic algebra and Weyl operators

Definition

Given $\left(z_{1}, \ldots, z_{n}, x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}^{2 n}$, there is a Weyl operator:

$$
\mathcal{W}(z, x):=\bigotimes_{j=1}^{n} Z_{(j)}^{z_{j}} X_{(j)}^{x_{j}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}
$$

The symplectic form $\omega: \mathbb{F}_{p}^{2 n} \oplus \mathbb{F}_{p}^{2 n} \rightarrow \mathbb{F}_{p}$ takes

$$
\left(\binom{z}{x},\binom{z^{\prime}}{x^{\prime}}\right) \mapsto z^{T} x^{\prime}-x^{\prime T} z
$$

This form captures the commutation of Weyl operators:

$$
\mathcal{W}(z, x) \mathcal{W}\left(z^{\prime}, x^{\prime}\right)=e^{\prime \cdot \pi \cdot \omega\left((z, x),\left(z^{\prime}, x^{\prime}\right)\right) / p} \mathcal{W}\left(z^{\prime}, x^{\prime}\right) \mathcal{W}(z, x)
$$

Stabilizer circuits are affine Lagrangian relations Definition

Lagrangian subspaces are linear subspaces $V \subseteq \mathbb{F}_{p}^{2 n}$ st:

$$
V=V^{\omega}:=\left\{v \in \mathbb{F}_{p}^{2 n} \mid \forall w \in V, \omega(v, w)=0\right\}
$$

These are linear subspaces of $\mathbb{F}_{p}^{2 n}$ where all elements commute wrt the symplectic form.

The two spiders we mentioned actually generate the prop AffLagRel \mathbb{F}_{p} of affine Lagrangian relations over \mathbb{F}_{p} :

The view of stabilizer states in terms of affine Lagrangian subspaces acted on by reversible transformations with measurement statistics was shown in [Calderbank et al., 1998, Gross, 2006, Catani and Browne, 2017, De Beaudrap, 2013]

Mixed stabilizers

The complex conjugation is given by

$$
\overline{\left(_\right)}: \text {AffLagRe }_{\mathbb{F}_{p}} \rightarrow \text { AffLagRel }_{\mathbb{F}_{p}} ;
$$

Mixed stabilizer circuits are constructed by doubling stabilizer circuits S :

The quantum discard is the cap:

$$
\llbracket \overline{=} \rrbracket \rrbracket=\rho
$$

Formally this is taking $\operatorname{CPM}\left(\operatorname{AffLagRel}_{\mathbb{F}_{p}}, \overline{\left(_\right)}\right) \cong \operatorname{CPM}\left(\operatorname{Stab}_{p}, \overline{\left(_\right)}\right) / \sim$

Stabilizer codes

Definition

There is a category of affine coisotropic relations
AffColsotRel $_{\mathbb{F}_{p}}$ whose morphisms $n \rightarrow m$ are affine subspaces

$$
L+a \subseteq \mathbb{F}_{p}^{2(n+m)} \text { such that } L^{\omega} \subseteq L
$$

(relaxed from affine Lagrangian subspaces where $L^{\omega}=L$)

Proposition ([Comfort, 2023])

AffColsotRe| ${ }_{\mathbb{F}_{p}}$ is presented by adding the discard relation to AffLagRel $\left.\right|_{\mathbb{P}_{p}}$:

$$
\llbracket Q 9 \rrbracket=\left\{\left.\left(\binom{z}{x}, *\right) \right\rvert\, \forall z, x \in \mathbb{F}_{p}\right\}
$$

Theorem ([Comfort, 2023])

$$
\text { AffColsotRel }_{\mathbb{F}_{p}} \cong \mathrm{CPM}\left(\operatorname{AffLagRe}_{\mathbb{F}_{p}}\right) \cong \mathrm{CPM}\left(\operatorname{Stab}_{p}\right) / \sim
$$

The quantum discard is the discard relation!
(reminiscent of [Carette et al., 2021])

Measurement

The Z and X projectors look as follows:

$$
\left.\left.\left.\left.p_{z}:=\right\}\right\} \theta=\left\lvert\, \begin{array}{l}
0 \\
0,
\end{array} p_{x}\right.:=\right\}\right\}=\left\{\left.\begin{array}{l}
0 \\
9
\end{array} \right\rvert\,\right.
$$

By splitting the X projector, following [Selinger, 2008], we get state preparation and measurement relations:

$$
\begin{aligned}
& \llbracket \bigcirc \left\lvert\, \rrbracket=\left\{\left.\left(x,\binom{z}{x}\right) \right\rvert\, \forall z, x \in \mathbb{F}_{p}\right\}\right. \\
& \llbracket \bigcirc \left\lvert\, \rrbracket=\left\{\left.\left(\binom{z}{x}, x\right) \right\rvert\, \forall z, x \in \mathbb{F}_{p}\right\}\right.
\end{aligned}
$$

Possible outcomes of Pauli measurements of stabilizer states are equally likely.

Quantum teleportation by spider fusion

(this also works for qubits)

Maps between stabilizer codes

This is a 2-category with respect to subspace inclusion:
Example
All stabilizers for the identity channel are stabilizers for the Z / X-projectors:

Example
All stabilizers for $|0\rangle$ are stabilizers for the maximally mixed state:

$$
\llbracket \circ \rrbracket=\emptyset \emptyset \subset \emptyset \emptyset=\llbracket \neq \rrbracket
$$

Error correction example: repetition code

Consider the Linear subspace:

$$
S=\left\{\left(\left(z_{1}, z_{2}, z_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right) \mid x_{1}=x_{2}=x_{3}\right\} \subseteq \mathbb{F}_{2}^{2(3)}
$$

Which can be written in the form of a circuit:

In the undoubled picture this looks like:

Recall S is coisotropic if $S^{\omega} \subseteq S$:

Moreover $S \subseteq \mathbb{F}_{2}^{2(3)}$ has dimension $3+1=4$
Chopping off the maximally mixed state gives us an encoding $\operatorname{map} \mathbb{F}_{2}^{2(1)} \rightarrow \mathbb{F}_{2}^{2(3)}$:

That is, this is a qubit [3, 1]-stabilizer code.
Encodes 1 logical qubit into 3 physical qubits.

Suppose there is a Pauli error $W((a, b, c),(d, e, f))$, then we have the following error detection circuit:

Alice

Suppose we want to correct for single pauli X errors, then we find that:

$$
\begin{aligned}
& X \text { error }(d, e, f)=(1,0,0) \text { syndrome }(e+d, f+d)=(1,1) \\
& X \text { error }(d, e, f)=(0,1,0) \text { syndrome }(e+d, f+d)=(1,0) \\
& X \text { error }(d, e, f)=(0,0,1) \text { syndrome }(e+d, f+d)=(0,1) \\
& X \text { error }(d, e, f)=(0,0,0) \text { syndrome }(e+d, f+d)=(0,0)
\end{aligned}
$$

Therefore, we want to apply the correction

$$
\mathbb{F}_{2}^{2} \rightarrow \mathbb{F}_{2}^{2(3)} ;(s, t) \mapsto((0,0,0),(s t, s(t+1),(s+1) t))
$$

The error correction protocol then has the following form:

If there is at most one X error, then $g=d e+e f+f d=0$. If furthermore, there are no Z errors:

Problems

The and gate isn't an affine subspace, so it doesn't live in affine coisotropic relations.
Using this formalism we can only correct for errors with affine post-processing.
This works for all odd prime qudit stabilizer codes, but only phase-free qubit stabilizer codes (CSS codes)+Z+X gates (no Fourier transform of phase shift)

Future work

Find nice semantics for stabilizer codes with nonlinear classical post-processing.
Undoubled completeness for arbitrary field (following [Booth and Carette, 2022, Poór et al., 2023])
Extending this work to optics/electrical circuits...
Code distance.

References I

R Bonchi, F., Piedeleu, R., Sobociński, P., and Zanasi, F. (2019).

Graphical affine algebra.
In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1-12. IEEE.
R Booth, R. I. and Carette, T. (2022).
Complete zx-calculi for the stabiliser fragment in odd prime dimensions.

R Calderbank, A., Rains, E., Shor, P., and Sloane, N. (1998). Quantum error correction via codes over gf(4).
IEEE Transactions on Information Theory,
44(4):1369-1387.

References II

R Carette, T., Jeandel, E., Perdrix, S., and Vilmart, R. (2021). Completeness of graphical languages for mixed state quantum mechanics.
ACM Transactions on Quantum Computing, 2(4).
(R. Catani, L. and Browne, D. E. (2017).

Spekkens' toy model in all dimensions and its relationship with stabiliser quantum mechanics.
New Journal of Physics, 19(7):073035.
國 Comfort, C. (2023).
The algebra for stabilizer codes.
: Comfort, C. and Kissinger, A. (2022). A graphical calculus for lagrangian relations.

References III

E De Beaudrap, N. (2013).
A linearized stabilizer formalism for systems of finite dimension.
Quantum Info. Comput., 13(1-2):73-115.
R Gross, D. (2006).
Hudson's theorem for finite-dimensional quantum systems.
Journal of mathematical physics, 47(12):122107.
Roór, B., Booth, R. I., Carette, T., van de Wetering, J., and Yeh, L. (2023).
The qupit stabiliser zx-travaganza: Simplified axioms, normal forms and graph-theoretic simplification.
arXiv preprint arXiv:2306.05204.
圊 Selinger, P. (2008).
Idempotents in dagger categories.
Electronic Notes in Theoretical Computer Science,
210:107-122.

References IV

E Zanasi, F. (2018).
Interacting Hopf Algebras: the theory of linear systems. PhD thesis, Université de Lyon.

