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Outline

The ZX-calculus

Graphical linear/affine algebra and the ZX-calculus

Graphical affine Lagrangian algebra and stabilizer circuits
[Comfort and Kissinger, 2022]

Graphical affine coisotropic algebra and stabilizer codes
[Comfort, 2023]



The ZX-calculus “splits the atom”

The ZX-calculus decomposes quantum circuits into smaller
components. Consider the controlled-X gate:
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These components are no longer circuits, but they are useful.



Spider fusion and Hopf law
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Interpreting the ZX-calculus
The d dimensional qudit (pure) ZX-caculi fare a family of
graphical languages for dn × dm dimensional complex matrices.

There are two families of generators, Z and X spiders,
decorated by phases ~θ = (0, θ1, θ2, . . . , θd−1) ∈ [0,2π)d :
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Terminology:

qudit → qubit when d = 2.
qudit → quopit when is an d odd prime.



Fragments of the ZX-calculus
Fragments of the ZX-calculus have restricted phases:

Example
The qudit phase-free fragment ZX-calculus has trivial angles:
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The qubit stabilizer fragment has Z/X angles in:

{(0,0), (0, π/2), (0, π), (0,2π/3)} ⊆ [0,2π)2

The quopit stabilizer fragment has Z/X angles in:
p−1∏
j=0

(n · j + m · j2)π/p

∣∣∣∣∣∣ ∀n,m ∈ Fp ∼= Z/pZ

 ⊆ [0,2π)p



Linear relations
Definition
Given a field k there is a prop LinRelk of linear relations,
whose maps n→ m are linear subspaces of kn ⊕ km under
relational composition: For S ⊆ kn ⊕ km and R ⊆ km ⊕ k `

S;R := {(x , z) ∈ kn ⊕ k `|∃y ∈ km : (x , y) ∈ S ∧ (y , z) ∈ R}

Lemma
LinRelk is generated by two spiders, scalars (+ equations):
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Lemma ([Zanasi, 2018])
LinRelFp is isomorphic to the p-dimensional qupit phase-free
ZX-calculus modulo scalars.

Proof.
A phase free ZX-diagram D is identified with its X stabilizers:
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Example: part i

Find the a1,a2,a3,b1,b2,b3 which satisfy:

X a1 X a2 X a3

X b1 X b2 X b3

=

a1 a2 a3

b1 b2 b3

a1 = a2 = b1 a1 + a3 = b2 + b3



Example: part i

Find the a1,a2,a3,b1,b2,b3 which satisfy:

X a1 X a2 X a3

X b1 X b2 X b3

=

a1 a2 a3

b1 b2 b3

a1 = a2 = b1 a1 + a3 = b2 + b3

These equations determine a linear subspace of F3
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What about the Z stabilizers?

The Fourier transform of a ZX-diagram is the colour swapping:
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In the phase-free ZX-calculus, this corresponds to the
orthogonal complement of linear subspaces:

(_)⊥ : LinRelFp → LinRelFp ;(
S ⊆ Fn

p
)
7→
(
{v ∈ Fn

p|∀w ∈ S, vT w = 0} ⊆ Fn
p
)

So we can also identify phase-free ZX-diagrams D with their Z
stabilizers JDKZ :

JDKZ = JDK⊥X



Example: part ii
Recall how we calculated the X stabilizers:

X a1 X a2 X a3

X b1 X b2 X b3

=

a1 a2 a3

b1 b2 b3

a1 = a2 = b1 a1 + a3 = b2 + b3

For Z stabilizers, find X stabilizers of the Fourier transform:

X−a1 X−a2 X−a3

X b1 X b2 X b3

=

−a1 −a2 −a3

b1 b2 b3

−a1 − a2 = b1 + b2 b2 = b3 = −a3



Affine relations
Definition ([Bonchi et al., 2019])
There is a prop AffRelk of affine relations, but now the
morphisms are (possibly empty) affine subspaces of kn ⊕ km.

Lemma
AffRelk is presented by decorating the grey spiders of LinRelk
with all elements c ∈ k:
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Modulo even more equations.



X-phase fragment of ZX and affine relations
The X gate is a phase:

X a = ~θ , where ~θ = (0aπ/p,1aπ/p,2aπ/p, . . . , (p − 1)aπ/p)

So consider the phase-free+X fragment of the ZX-calculus.

Theorem
AffRelFp is isomorphic to the p-dimensional qudit phase free+X
ZX-calculus gate modulo scalars.

Proof.
The affine shift and X -gate have the same effect on X
stabilizers.

X a =

p−1∑
x=0

|x + a〉〈x |,
s

a

{
= {(x , x + a)}



Example: part iii
What are the a1,a2,a3,b1,b2,b3 ∈ Fp which satisfy:

X a1 X a2 X a3

X b1 X b2 X b3

X c

=

X c



Example: part iii
What are the a1,a2,a3,b1,b2,b3 ∈ Fp which satisfy:

X a1 X a2 X a3

X b1 X b2 X b3

X c

=

X c

We can translate this into affine relations:
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a1 a2 a3

b1 b2 b3

=
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a1 a2 a3

b1 b2 b3

a1 = a2 = b1 a1 + a3 + c = b2 + b3



Example: part iii
What are the a1,a2,a3,b1,b2,b3 ∈ Fp which satisfy:
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X c
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Adding Z and X gates to the picture
We can combine the Z and X-stabilizers in the same picture.

The phase-free circuits are doubled linear relations:

V 7→ V⊥ V

And add both the Z and X gates at once:
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The Z/X gates shift the Z/X stabilizers:
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This captures the phase-free+Z+X fragment of the ZX calculus



Example: part iv
Consider the interpretation of this ZX diagram:
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The Z and X stabilizers don’t interact with each other for
phase-free+Z+X circuits...



Getting all stabilizer circuits
We can add the phase-shift gates to the picture:

Theorem ([Comfort and Kissinger, 2022])
Quopit stabilizer circuits are generated by the affine relations:
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The interpretation of the grey spider is analogous.



“Splitting the atom” ×2

The Fourier transform is derived by Euler composition:
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And the Euler decomposition is derived from the Hopf law!



Symplectic algebra and Weyl operators

Definition
Given (z1, . . . , zn, x1, . . . , xn) ∈ F2n

p , there is a Weyl operator:

W(z, x) :=
n⊗

j=1

Z zj
(j)X

xj
(j) : C

n → Cn

The symplectic form ω : F2n
p ⊕ F2n

p → Fp takes((
z
x

)
,

(
z ′

x ′

))
7→ zT x ′ − x ′T z

This form captures the commutation of Weyl operators:

W(z, x)W(z ′, x ′) = e·i·π·ω((z,x),(z
′,x ′))/pW(z ′, x ′)W(z, x)



Stabilizer circuits are affine Lagrangian relations
Definition
Lagrangian subspaces are linear subspaces V ⊆ F2n

p st:
V = Vω := {v ∈ F2n

p |∀w ∈ V , ω(v ,w) = 0}

These are linear subspaces of F2n
p where all elements commute

wrt the symplectic form.

The two spiders we mentioned actually generate the prop
AffLagRelFp of affine Lagrangian relations over Fp:
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The view of stabilizer states in terms of affine Lagrangian
subspaces acted on by reversible transformations with
measurement statistics was shown in [Calderbank et al., 1998,
Gross, 2006, Catani and Browne, 2017, De Beaudrap, 2013]



Mixed stabilizers
The complex conjugation is given by

(_) : AffLagRelFp → AffLagRelFp ;

n,m

· · ·

· · ·

7→
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· · ·

−n,−m n,m

· · ·
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Mixed stabilizer circuits are constructed by doubling stabilizer
circuits S:

S S

The quantum discard is the cap:
s {

=

Formally this is taking
CPM(AffLagRelFp , (_)) ∼= CPM(Stabp, (_))/ ∼



Stabilizer codes

Definition
There is a category of affine coisotropic relations
AffCoIsotRelFp whose morphisms n→ m are affine subspaces

L + a ⊆ F2(n+m)
p such that Lω ⊆ L

(relaxed from affine Lagrangian subspaces where Lω = L)

Proposition ([Comfort, 2023])
AffCoIsotRelFp is presented by adding the discard relation to
AffLagRelFp :

r z
=

{((
z
x

)
, ∗
) ∣∣∣∣ ∀z, x ∈ Fp

}
Theorem ([Comfort, 2023])

AffCoIsotRelFp
∼= CPM(AffLagRelFp)

∼= CPM(Stabp)/ ∼

The quantum discard is the discard relation!
(reminiscent of [Carette et al., 2021])



Measurement
The Z and X projectors look as follows:

pZ := = , pX := =

By splitting the X projector, following [Selinger, 2008], we get
state preparation and measurement relations:

s {
=

{(
x ,
(

z
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)) ∣∣∣∣ ∀z, x ∈ Fp

}
s {

=

{((
z
x

)
, x
) ∣∣∣∣ ∀z, x ∈ Fp

}
Possible outcomes of Pauli measurements of stabilizer states
are equally likely.



Quantum teleportation by spider fusion

Alice Bob

Phase correction

Measurement

= = =

(this also works for qubits)



Maps between stabilizer codes
This is a 2-category with respect to subspace inclusion:

Example
All stabilizers for the identity channel are stabilizers for the
Z/X -projectors:
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Example
All stabilizers for |0〉 are stabilizers for the maximally mixed
state:

s {
= ⊂ =

s {



Error correction example: repetition code
Consider the Linear subspace:

S = {((z1, z2, z3), (x1, x2, x3))|x1 = x2 = x3} ⊆ F2(3)
2

Which can be written in the form of a circuit:

S
= =

In the undoubled picture this looks like:



Recall S is coisotropic if Sω ⊆ S:



ω

= = ⊆

Moreover S ⊆ F2(3)
2 has dimension 3 + 1 = 4

Chopping off the maximally mixed state gives us an encoding
map F2(1)

2 → F2(3)
2 :

That is, this is a qubit [3,1]-stabilizer code.

Encodes 1 logical qubit into 3 physical qubits.



Suppose there is a Pauli error W ((a,b, c), (d ,e, f )), then we
have the following error detection circuit:

a b c d e f

Alice

Bob Syndrome

Pauli error

Encoding

e fd e + d f + da b c

=

Nondestructive
measurement



Suppose we want to correct for single pauli X errors, then we
find that:

X error (d ,e, f ) = (1,0,0) syndrome (e + d , f + d) = (1,1)
X error (d ,e, f ) = (0,1,0) syndrome (e + d , f + d) = (1,0)
X error(d ,e, f ) = (0,0,1) syndrome (e + d , f + d) = (0,1)
X error (d ,e, f ) = (0,0,0) syndrome (e + d , f + d) = (0,0)

Therefore, we want to apply the correction

F2
2 → F2(3)

2 ; (s, t) 7→ ( (0,0,0), (st , s(t + 1), (s + 1)t) )



The error correction protocol then has the following form:

a b c d e f

Alice
Bob

&
&

&

1 1

g gg

f + d

a b c

where g := d + (e + d)(f + d)
= e + (e + d)(f + d + 1)
= f + (e + d + 1)(f + d)
= de + ef + fd

e + d

=



If there is at most one X error, then g = de + ef + fd = 0.

If furthermore, there are no Z errors:

g gg

e + d f + d

a b c

e + d f + d e + d f + d

= =



Problems

The and gate isn’t an affine subspace, so it doesn’t live in
affine coisotropic relations.
Using this formalism we can only correct for errors with
affine post-processing.
This works for all odd prime qudit stabilizer codes, but only
phase-free qubit stabilizer codes (CSS codes)+Z+X gates
(no Fourier transform of phase shift)

Future work

Find nice semantics for stabilizer codes with nonlinear
classical post-processing.
Undoubled completeness for arbitrary field (following
[Booth and Carette, 2022, Poór et al., 2023])
Extending this work to optics/electrical circuits...
Code distance.



References I

Bonchi, F., Piedeleu, R., Sobociński, P., and Zanasi, F.
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