Self-duality and Jordan structure of quantum theory follow from homogeneity and pure transitivity

Howard Barnum Cozmin Ududec John van de Wetering

University of Amsterdam

July 17th 2023 - QPL

• Self-duality: We can map states into effects by an inner product.

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any **pure** state to any other **pure** state by a reversible transformation.

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any **pure** state to any other **pure** state by a reversible transformation.
- Homogeneity: We can map any **mixed** state to any other **mixed** state by a probabilistically reversible transformation.

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any **pure** state to any other **pure** state by a reversible transformation.
- Homogeneity: We can map any **mixed** state to any other **mixed** state by a probabilistically reversible transformation.

We show that in any GPT:

 $Homogeneity + pure transitivity \implies self-duality.$

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any **pure** state to any other **pure** state by a reversible transformation.
- Homogeneity: We can map any **mixed** state to any other **mixed** state by a probabilistically reversible transformation.

We show that in any GPT:

```
Homogeneity + pure transitivity \implies self-duality.
```

From this follows:

Homogeneity + pure transitivity + local tomography uniquely defines quantum theory

What is self-duality?

In a Generalised probabilistic theory (GPT) we describe a system by a

- convex state space Ω,
- convex effect space E,
- affine probability function $(\omega, e) \in [0, 1]$ for $\omega \in \Omega$ and $e \in E$.

What is self-duality?

In a Generalised probabilistic theory (GPT) we describe a system by a

- convex state space Ω,
- convex effect space E,

• affine probability function $(\omega, e) \in [0, 1]$ for $\omega \in \Omega$ and $e \in E$.

In quantum theory:

- $\Omega \subseteq M_n(\mathbb{C})_{sa}$ are density matrices,
- $E \subseteq M_n(\mathbb{C})_{sa}$ are positive sub-unital matrices,
- (\cdot, \cdot) given by inner product $\langle A, B \rangle := tr(AB)$.

What is self-duality?

In a Generalised probabilistic theory (GPT) we describe a system by a

- convex state space Ω,
- convex effect space E,

• affine probability function $(\omega, e) \in [0, 1]$ for $\omega \in \Omega$ and $e \in E$.

In quantum theory:

- $\Omega \subseteq M_n(\mathbb{C})_{\mathsf{sa}}$ are density matrices,
- $E \subseteq M_n(\mathbb{C})_{sa}$ are positive sub-unital matrices,
- (\cdot, \cdot) given by inner product $\langle A, B \rangle := tr(AB)$.

Something peculiar: Ω and E belong to same space $M_n(\mathbb{C})_{sa}$, and are related by inner product. This is **self-duality**.

Self-duality

Definition (informal)

A system is **self-dual** when (unnormalized) states can be identified with the effects by a probability-determining inner product.

Self-duality

Definition (informal)

A system is **self-dual** when (unnormalized) states can be identified with the effects by a probability-determining inner product.

Self-duality is 'rare' amongst GPTs:

Koecher-Vinberg theorem

self-duality + homogeneity = Jordan algebra = 'almost' quantum.

• We can embed state space Ω into vector space V.

- We can embed state space Ω into vector space V.
- Then E is subset of $V^* := \{f : V \to \mathbb{R}\}$, by $e(\omega) := (\omega, e)$.

GPTs as vector spaces

- We can embed state space Ω into vector space V.
- Then E is subset of $V^* := \{f : V \to \mathbb{R}\}$, by $e(\omega) := (\omega, e)$.
- In finite dimension, V is **always** linearly isomorphic to V^* (via a choice of basis), and this defines an inner product.

GPTs as vector spaces

- We can embed state space Ω into vector space V.
- Then E is subset of $V^* := \{f : V \to \mathbb{R}\}$, by $e(\omega) := (\omega, e)$.
- In finite dimension, V is **always** linearly isomorphic to V^* (via a choice of basis), and this defines an inner product.
- Q: So what exactly is special about self-duality?

GPTs as vector spaces

- We can embed state space Ω into vector space V.
- Then E is subset of $V^* := \{f : V \to \mathbb{R}\}$, by $e(\omega) := (\omega, e)$.
- In finite dimension, V is **always** linearly isomorphic to V^* (via a choice of basis), and this defines an inner product.
- Q: So what exactly is special about self-duality?
- A: General inner products don't map valid states to valid effects.

We were missing crucial information about the vector space:

• We can order V by $a \le b$ iff $(a, e) \le (b, e)$ for all $e \in E$.

- We can order V by $a \le b$ iff $(a, e) \le (b, e)$ for all $e \in E$.
- This gives a **positive cone** $V_+ := \{v \ge 0 \mid v \in V\}.$

- We can order V by $a \le b$ iff $(a, e) \le (b, e)$ for all $e \in E$.
- This gives a **positive cone** $V_+ := \{v \ge 0 \mid v \in V\}.$
- We have $\Omega \subseteq V_+$.

- We can order V by $a \le b$ iff $(a, e) \le (b, e)$ for all $e \in E$.
- This gives a **positive cone** $V_+ := \{v \ge 0 \mid v \in V\}.$
- We have $\Omega \subseteq V_+$.
- (In QT, positive cone = {positive-semidefinite matrices}.)

- We can order V by $a \le b$ iff $(a, e) \le (b, e)$ for all $e \in E$.
- This gives a **positive cone** $V_+ := \{v \ge 0 \mid v \in V\}.$
- We have $\Omega \subseteq V_+$.
- (In QT, positive cone = {positive-semidefinite matrices}.)
- Can also order the dual V^* , to get $E \subseteq (V^*)_+$.

- We can order V by $a \le b$ iff $(a, e) \le (b, e)$ for all $e \in E$.
- This gives a **positive cone** $V_+ := \{v \ge 0 \mid v \in V\}.$
- We have $\Omega \subseteq V_+$.
- (In QT, positive cone = {positive-semidefinite matrices}.)
- Can also order the dual V^* , to get $E \subseteq (V^*)_+$.
- Desired inner product should hence at least preserve positivity.

Self-dual inner product

Definition

Let V be an ordered vector space.

An inner product $\langle \cdot, \cdot \rangle$ on V is **self-dualising** when

 $\langle v, w \rangle \ge 0$ for all $w \ge 0 \iff v \ge 0$.

Self-dual inner product

Definition

Let V be an ordered vector space.

An inner product $\langle \cdot, \cdot \rangle$ on V is **self-dualising** when

$$\langle v, w \rangle \ge 0$$
 for all $w \ge 0 \iff v \ge 0$.

Equivalently: view $\langle \cdot, \cdot \rangle$ as $\Phi : V \to V^*$ by $\Phi(v)(w) = \langle v, w \rangle$. Then $\langle \cdot, \cdot \rangle$ is self-dual iff Φ is an **order isomorphism**:

$$\Phi(v)\geq 0\iff v\geq 0.$$

Self-dual inner product

Definition

Let V be an ordered vector space.

An inner product $\langle \cdot, \cdot \rangle$ on V is **self-dualising** when

$$\langle v, w \rangle \ge 0$$
 for all $w \ge 0 \iff v \ge 0$.

Equivalently: view $\langle \cdot, \cdot \rangle$ as $\Phi : V \to V^*$ by $\Phi(v)(w) = \langle v, w \rangle$. Then $\langle \cdot, \cdot \rangle$ is self-dual iff Φ is an **order isomorphism**:

$$\Phi(v) \geq 0 \iff v \geq 0.$$

Note

The existence of just an order iso $\Phi: V \to V^*$ is known as **weak** self-duality. Weak SD is necessary for state-teleportation protocols in GPTs (Barnum *et al.* 2012).

Barnum, Ududec & van de Wetering

Self-duality and homogeneity

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the **interior** of the positive cone.

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the interior of the positive cone.
- In a GPT, a state ω is in the interior, if it is completely mixed:
 (ω, e) > 0 for all e ∈ E.

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the **interior** of the positive cone.
- In a GPT, a state ω is in the interior, if it is completely mixed:
 (ω, e) > 0 for all e ∈ E.
- In QT, a density matrix ρ is in the interior iff it is full-rank iff it is invertible.

Homogeneity: 'the positive cone is maximally symmetric.'

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the interior of the positive cone.
- In a GPT, a state ω is in the interior, if it is completely mixed:
 (ω, e) > 0 for all e ∈ E.
- In QT, a density matrix ρ is in the interior iff it is full-rank iff it is invertible.

Definition

A cone V_+ is **homogeneous** when for any two interior states $v, w \in V_+$, there is an order iso Φ , such that $\Phi(v) = w$.

Definition

A cone V_+ is **homogeneous** when for any two interior states $v, w \in V_+$, there is an order iso Φ , such that $\Phi(v) = w$.

In quantum theory:

• Let ρ and σ be full-rank (unnormalised) states in $M_n(\mathbb{C})_{sa}$.

Definition

A cone V_+ is **homogeneous** when for any two interior states $v, w \in V_+$, there is an order iso Φ , such that $\Phi(v) = w$.

In quantum theory:

- Let ρ and σ be full-rank (unnormalised) states in $M_n(\mathbb{C})_{sa}$.
- Define $\Phi(A) := \sqrt{\sigma} \sqrt{\rho^{-1}} A \sqrt{\rho^{-1}} \sqrt{\sigma}$.

Definition

A cone V_+ is **homogeneous** when for any two interior states $v, w \in V_+$, there is an order iso Φ , such that $\Phi(v) = w$.

In quantum theory:

- Let ρ and σ be full-rank (unnormalised) states in $M_n(\mathbb{C})_{sa}$.
- Define $\Phi(A) := \sqrt{\sigma} \sqrt{\rho^{-1}} A \sqrt{\rho^{-1}} \sqrt{\sigma}$.
- Φ is certainly positive. Can also easily construct a positive inverse.
- Hence Φ is an order iso.

Definition

A cone V_+ is **homogeneous** when for any two interior states $v, w \in V_+$, there is an order iso Φ , such that $\Phi(v) = w$.

In quantum theory:

- Let ρ and σ be full-rank (unnormalised) states in $M_n(\mathbb{C})_{sa}$.
- Define $\Phi(A) := \sqrt{\sigma} \sqrt{\rho^{-1}} A \sqrt{\rho^{-1}} \sqrt{\sigma}$.
- Φ is certainly positive. Can also easily construct a positive inverse.
- Hence Φ is an order iso.
- And we see that Φ(ρ) = σ.

So quantum systems are homogeneous.

Homogeneity operationally

Mathematical meaning of homogeneity:

'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'
Homogeneity operationally

Mathematical meaning of homogeneity:

'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'

Q: What is the operational meaning?

Homogeneity operationally

Mathematical meaning of homogeneity:

'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'

Q: What is the operational meaning?

An answer:

Theorem (based on Barnum et al. 2013)

If a system in a GPT is irreducible and allows **universal self-steering**, then it is homogeneous.

Homogeneity operationally

Mathematical meaning of homogeneity:

'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'

Q: What is the operational meaning?

An answer:

Theorem (based on Barnum et al. 2013)

If a system in a GPT is irreducible and allows **universal self-steering**, then it is homogeneous.

Informally, we say a system *B* **universally steers** *A*, if for every bipartite state ω_{AB} we can induce any^{*} state on *A* by observing the right effect on *B*.

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a **Euclidean Jordan algebra** (EJA).

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a **Euclidean Jordan algebra** (EJA).

von Neumann, Wigner, Jordan classification

Any EJA is a direct sum of

• $M_n(\mathbb{C})_{sa}$: complex quantum systems

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a **Euclidean Jordan algebra** (EJA).

von Neumann, Wigner, Jordan classification

Any EJA is a direct sum of

- $M_n(\mathbb{C})_{sa}$: complex quantum systems
- $M_n(\mathbb{R})_{sa}$: real quantum systems

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a **Euclidean Jordan algebra** (EJA).

von Neumann, Wigner, Jordan classification

Any EJA is a direct sum of

- $M_n(\mathbb{C})_{sa}$: complex quantum systems
- $M_n(\mathbb{R})_{sa}$: real quantum systems
- $M_n(\mathbb{H})_{sa}$: quaternionic quantum systems

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a **Euclidean Jordan algebra** (EJA).

von Neumann, Wigner, Jordan classification

Any EJA is a direct sum of

- $M_n(\mathbb{C})_{sa}$: complex quantum systems
- $M_n(\mathbb{R})_{sa}$: real quantum systems
- $M_n(\mathbb{H})_{sa}$: quaternionic quantum systems
- M₃(𝔅)_{sa}: a 3-dimensional octonionic system

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a **Euclidean Jordan algebra** (EJA).

von Neumann, Wigner, Jordan classification Any EJA is a direct sum of M_n(ℂ)_{sa}: complex quantum systems M_n(ℝ)_{sa}: real quantum systems M_n(ℍ)_{sa}: quaternionic quantum systems M₃(ℂ)_{sa}: a 3-dimensional octonionic system

spin-factors: systems where Ω is an *n*-sphere (i.e. 'generalised qubits').

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a **Euclidean Jordan algebra** (EJA).

von Neumann, Wigner, Jordan classification Any EJA is a direct sum of M_n(C)_{sa}: complex quantum systems M_n(R)_{sa}: real quantum systems M_n(H)_{sa}: quaternionic quantum systems M₃(O)_{sa}: a 3-dimensional octonionic system spin-factors: systems where Ω is an *n*-sphere

(i.e. 'generalised qubits').

\Rightarrow EJAs are 'almost-quantum' systems.

- Koecher-Vinberg theorem is very powerful.
- Homogeneity has operational interpretation (steering).
- Self-duality does not.
- Can we replace it with some other nicer/operational property?

Definition

In a GPT system, a **pure state** is a convex extremal element of Ω :

$$\omega \in \Omega$$
 pure iff $\omega = \lambda \omega_1 + (1 - \lambda) \omega_2 \implies \omega_1 = \omega_2$

Definition

In a GPT system, a **pure state** is a convex extremal element of Ω :

$$\omega \in \Omega$$
 pure iff $\omega = \lambda \omega_1 + (1 - \lambda) \omega_2 \implies \omega_1 = \omega_2$

Definition

In a GPT, a **reversible** transformation is an affine $\Phi : \Omega \to \Omega$ which has an inverse Φ^{-1} such that $\Phi \circ \Phi^{-1} = id = \Phi^{-1} \circ \Phi$.

Definition

In a GPT system, a **pure state** is a convex extremal element of Ω :

$$\omega \in \Omega$$
 pure iff $\omega = \lambda \omega_1 + (1 - \lambda) \omega_2 \implies \omega_1 = \omega_2$

Definition

In a GPT, a **reversible** transformation is an affine $\Phi : \Omega \to \Omega$ which has an inverse Φ^{-1} such that $\Phi \circ \Phi^{-1} = id = \Phi^{-1} \circ \Phi$.

In QT:

- Pure states are what you think.
- Reversible transformations correspond to unitaries.

Definition

In a GPT system, a **pure state** is a convex extremal element of Ω :

$$\omega \in \Omega$$
 pure iff $\omega = \lambda \omega_1 + (1 - \lambda) \omega_2 \implies \omega_1 = \omega_2$

Definition

In a GPT, a **reversible** transformation is an affine $\Phi : \Omega \to \Omega$ which has an inverse Φ^{-1} such that $\Phi \circ \Phi^{-1} = id = \Phi^{-1} \circ \Phi$.

In QT:

- Pure states are what you think.
- Reversible transformations correspond to unitaries.

Definition

A GPT system satisfies **pure transitivity** iff for any pure states ω_1, ω_2 we can find a reversible transformation Φ such that $\Phi(\omega_1) = \omega_2$.

Barnum, Ududec & van de Wetering

Definition

A GPT system satisfies **pure transitivity** iff for any pure states ω_1, ω_2 we can find a reversible transformation Φ such that $\Phi(\omega_1) = \omega_2$.

Pure transitivity follows from *essential uniqueness of purification* + *pure conditioning* (that pure measurements preserve pure states).

Definition

A GPT system satisfies **pure transitivity** iff for any pure states ω_1, ω_2 we can find a reversible transformation Φ such that $\Phi(\omega_1) = \omega_2$.

Pure transitivity follows from *essential uniqueness of purification* + *pure conditioning* (that pure measurements preserve pure states).

More philosophically:

• If we consider pure states the 'real' states of the theory,

Definition

A GPT system satisfies **pure transitivity** iff for any pure states ω_1, ω_2 we can find a reversible transformation Φ such that $\Phi(\omega_1) = \omega_2$.

Pure transitivity follows from *essential uniqueness of purification* + *pure conditioning* (that pure measurements preserve pure states).

More philosophically:

- If we consider pure states the 'real' states of the theory,
- and we consider reversible transformations as the 'real' dynamics,

Definition

A GPT system satisfies **pure transitivity** iff for any pure states ω_1, ω_2 we can find a reversible transformation Φ such that $\Phi(\omega_1) = \omega_2$.

Pure transitivity follows from *essential uniqueness of purification* + *pure conditioning* (that pure measurements preserve pure states).

More philosophically:

- If we consider pure states the 'real' states of the theory,
- and we consider reversible transformations as the 'real' dynamics,
- then failure of pure transitivity would mean two states of a system are not transformable into each other.

Definition

A GPT system satisfies **pure transitivity** iff for any pure states ω_1, ω_2 we can find a reversible transformation Φ such that $\Phi(\omega_1) = \omega_2$.

Pure transitivity follows from *essential uniqueness of purification* + *pure conditioning* (that pure measurements preserve pure states).

More philosophically:

- If we consider pure states the 'real' states of the theory,
- and we consider reversible transformations as the 'real' dynamics,
- then failure of pure transitivity would mean two states of a system are not transformable into each other.
- But then isn't our definition of system is wrong?

Recall $\Omega \subseteq V_+ \subseteq V$.

• $\Phi: V \to V$ is order iso when $\Phi(v) \ge 0 \iff v \ge 0$.

Recall $\Omega \subseteq V_+ \subseteq V$.

- $\Phi: V \to V$ is order iso when $\Phi(v) \ge 0 \iff v \ge 0$.
- It is a **normalised** order iso when $\Phi(\Omega) = \Omega$.
- Reversible transformations are normalised order iso's.

Recall $\Omega \subseteq V_+ \subseteq V$.

- $\Phi: V \to V$ is order iso when $\Phi(v) \ge 0 \iff v \ge 0$.
- It is a **normalised** order iso when $\Phi(\Omega) = \Omega$.
- Reversible transformations are normalised order iso's.

Pure transitivity

for all pure $\omega_1, \omega_2 \in \Omega$ there exists a normalised order iso Φ such that $\Phi(\omega_1) = \omega_2$.

Homogeneity

for all interior $v_1, v_2 \in V_+$ there exists an order iso Φ such that $\Phi(v_1) = v_2$.

Recall $\Omega \subseteq V_+ \subseteq V$.

- $\Phi: V \to V$ is order iso when $\Phi(v) \ge 0 \iff v \ge 0$.
- It is a **normalised** order iso when $\Phi(\Omega) = \Omega$.
- Reversible transformations are normalised order iso's.

Pure transitivity

for all pure $\omega_1, \omega_2 \in \Omega$ there exists a normalised order iso Φ such that $\Phi(\omega_1) = \omega_2$.

Homogeneity

for all interior $v_1, v_2 \in V_+$ there exists an order iso Φ such that $\Phi(v_1) = v_2$.

Note: order iso's are rescaled **probabilistically reversible** transformations: $\Phi \circ \Phi^{\sharp} = p$ id

Our results

Theorem

Our results

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

Corollary (via Koecher-Vinberg theorem)

Such a vector space is then order-isomorphic to a Euclidean Jordan algebra.

Some more corollaries

Definition

We say Ω satisfies **continuous** pure transitivity when for all pure $\omega_1, \omega_2 \in \Omega$ there is a family Φ_t of reversible transformations for $t \in [0, 1]$ such that $t \mapsto \Phi_t(v_1)$ is a continuous path from v_1 to v_2 .

Some more corollaries

Definition

We say Ω satisfies **continuous** pure transitivity when for all pure $\omega_1, \omega_2 \in \Omega$ there is a family Φ_t of reversible transformations for $t \in [0, 1]$ such that $t \mapsto \Phi_t(v_1)$ is a continuous path from v_1 to v_2 .

Corollary

The state space of a system that satisfies continuous pure transitivity and universal self-steering is order-isomorphic to a Euclidean Jordan algebra.

Reconstructing quantum theory

We can reconstruct Jordan algebras. But can we restrict to just the quantum systems?

Reconstructing quantum theory

We can reconstruct Jordan algebras. But can we restrict to just the quantum systems?

Definition

We say the composite of systems A and B is **locally tomographic** if dim $V_{AB} = \dim V_A \cdot \dim V_B$ (i.e. when product states/effects span the composite state/effect space).

Reconstructing quantum theory

We can reconstruct Jordan algebras. But can we restrict to just the quantum systems?

Definition

We say the composite of systems A and B is **locally tomographic** if dim $V_{AB} = \dim V_A \cdot \dim V_B$ (i.e. when product states/effects span the composite state/effect space).

Theorem

Let A be a system in a GPT where composites are locally tomographic and every state space is homogeneous and satisfies continuous pure transitivity. Then $V_A \cong M_n(\mathbb{C})_{sa}$.

Theorem

Theorem

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace $V^c,$ such that
- $V_+^c := V^c \cap V_+$ is homogeneous and self-dual.

Theorem

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace $V^c,$ such that
- $V_+^c := V^c \cap V_+$ is homogeneous and self-dual.
- It turns out V^c is invariant under normalised order iso's of V.
- V^c has at least one pure state ω_c that is also a pure state of V.

Theorem

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^c , such that
- $V_+^c := V^c \cap V_+$ is homogeneous and self-dual.
- It turns out V^c is invariant under normalised order iso's of V.
- V^c has at least one pure state ω_c that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that Φ(ω_c) = ω.

Theorem

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^c , such that
- $V_+^c := V^c \cap V_+$ is homogeneous and self-dual.
- It turns out V^c is invariant under normalised order iso's of V.
- V^c has at least one pure state ω_c that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that Φ(ω_c) = ω.

• But
$$\Phi(V^c) = V^c$$
, so $\omega \in V^c$.
The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^c , such that
- $V_+^c := V^c \cap V_+$ is homogeneous and self-dual.
- It turns out V^c is invariant under normalised order iso's of V.
- V^c has at least one pure state ω_c that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that Φ(ω_c) = ω.

• But
$$\Phi(V^c) = V^c$$
, so $\omega \in V^c$.

• Hence V and V^c have the same pure states.

The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^c , such that
- $V_+^c := V^c \cap V_+$ is homogeneous and self-dual.
- It turns out V^c is invariant under normalised order iso's of V.
- V^c has at least one pure state ω_c that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that Φ(ω_c) = ω.

• But
$$\Phi(V^c) = V^c$$
, so $\omega \in V^c$.

- Hence V and V^c have the same pure states.
- Hence $V^c = V$.

• Self-duality follows from homogeneity and pure transitivity.

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.
- Also requiring local tomography uniquely pinpoints quantum theory.

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.
- Also requiring local tomography uniquely pinpoints quantum theory.
- Could've instead assumed a 'dynamical correspondence': a mapping from reversible transformations to observables.

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.
- Also requiring local tomography uniquely pinpoints quantum theory.
- Could've instead assumed a 'dynamical correspondence': a mapping from reversible transformations to observables.
- This then hence gives a reconstruction purely in terms of the symmetries of the pure and mixed states.

Thank you for your attention!

Barnum, Ududec, vdW 2023, arXiv:2306.00362 Self-duality and Jordan structure of quantum theory follow from homogeneity and pure transitivity