Self-duality and Jordan structure of quantum theory follow from homogeneity and pure transitivity

Howard Barnum
Cozmin Ududec John van de Wetering University of Amsterdam

July 17th 2023 — QPL

Three special properties of quantum theory

Three special properties of quantum theory

- Self-duality: We can map states into effects by an inner product.

Three special properties of quantum theory

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any pure state to any other pure state by a reversible transformation.

Three special properties of quantum theory

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any pure state to any other pure state by a reversible transformation.
- Homogeneity: We can map any mixed state to any other mixed state by a probabilistically reversible transformation.

Three special properties of quantum theory

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any pure state to any other pure state by a reversible transformation.
- Homogeneity: We can map any mixed state to any other mixed state by a probabilistically reversible transformation.

We show that in any GPT:
Homogeneity + pure transitivity \Longrightarrow self-duality.

Three special properties of quantum theory

- Self-duality: We can map states into effects by an inner product.
- Pure transitivity: We can map any pure state to any other pure state by a reversible transformation.
- Homogeneity: We can map any mixed state to any other mixed state by a probabilistically reversible transformation.

We show that in any GPT:
Homogeneity + pure transitivity \Longrightarrow self-duality.
From this follows:
Homogeneity + pure transitivity + local tomography uniquely defines quantum theory

What is self-duality?

In a Generalised probabilistic theory (GPT) we describe a system by a

- convex state space Ω,
- convex effect space E,
- affine probability function $(\omega, e) \in[0,1]$ for $\omega \in \Omega$ and $e \in E$.

What is self-duality?

In a Generalised probabilistic theory (GPT) we describe a system by a

- convex state space Ω,
- convex effect space E,
- affine probability function $(\omega, e) \in[0,1]$ for $\omega \in \Omega$ and $e \in E$.

In quantum theory:

- $\Omega \subseteq M_{n}(\mathbb{C})_{\text {sa }}$ are density matrices,
- $E \subseteq M_{n}(\mathbb{C})_{\text {sa }}$ are positive sub-unital matrices,
- (\cdot, \cdot) given by inner product $\langle A, B\rangle:=\operatorname{tr}(A B)$.

What is self-duality?

In a Generalised probabilistic theory (GPT) we describe a system by a

- convex state space Ω,
- convex effect space E,
- affine probability function $(\omega, e) \in[0,1]$ for $\omega \in \Omega$ and $e \in E$.

In quantum theory:

- $\Omega \subseteq M_{n}(\mathbb{C})_{\text {sa }}$ are density matrices,
- $E \subseteq M_{n}(\mathbb{C})_{\text {sa }}$ are positive sub-unital matrices,
- (\cdot, \cdot) given by inner product $\langle A, B\rangle:=\operatorname{tr}(A B)$.

Something peculiar: Ω and E belong to same space $M_{n}(\mathbb{C})_{\text {sa }}$, and are related by inner product.
This is self-duality.

Self-duality

Definition (informal)

A system is self-dual when (unnormalized) states can be identified with the effects by a probability-determining inner product.

Self-duality

Definition (informal)

A system is self-dual when (unnormalized) states can be identified with the effects by a probability-determining inner product.

Self-duality is 'rare' amongst GPTs:
Koecher-Vinberg theorem
self-duality + homogeneity $=$ Jordan algebra $=$ 'almost' quantum.

GPTs as vector spaces

- We can embed state space Ω into vector space V.

GPTs as vector spaces

- We can embed state space Ω into vector space V.
- Then E is subset of $V^{*}:=\{f: V \rightarrow \mathbb{R}\}$, by $e(\omega):=(\omega, e)$.

GPTs as vector spaces

- We can embed state space Ω into vector space V.
- Then E is subset of $V^{*}:=\{f: V \rightarrow \mathbb{R}\}$, by $e(\omega):=(\omega, e)$.
- In finite dimension, V is always linearly isomorphic to V^{*} (via a choice of basis), and this defines an inner product.

GPTs as vector spaces

- We can embed state space Ω into vector space V.
- Then E is subset of $V^{*}:=\{f: V \rightarrow \mathbb{R}\}$, by $e(\omega):=(\omega, e)$.
- In finite dimension, V is always linearly isomorphic to V^{*} (via a choice of basis), and this defines an inner product.

Q: So what exactly is special about self-duality?

GPTs as vector spaces

- We can embed state space Ω into vector space V.
- Then E is subset of $V^{*}:=\{f: V \rightarrow \mathbb{R}\}$, by $e(\omega):=(\omega, e)$.
- In finite dimension, V is always linearly isomorphic to V^{*} (via a choice of basis), and this defines an inner product.

Q: So what exactly is special about self-duality?
A: General inner products don't map valid states to valid effects.

GPTs as ordered vector spaces

We were missing crucial information about the vector space:

- We can order V by $a \leq b$ iff $(a, e) \leq(b, e)$ for all $e \in E$.

GPTs as ordered vector spaces

We were missing crucial information about the vector space:

- We can order V by $a \leq b$ iff $(a, e) \leq(b, e)$ for all $e \in E$.
- This gives a positive cone $V_{+}:=\{v \geq 0 \mid v \in V\}$.

GPTs as ordered vector spaces

We were missing crucial information about the vector space:

- We can order V by $a \leq b$ iff $(a, e) \leq(b, e)$ for all $e \in E$.
- This gives a positive cone $V_{+}:=\{v \geq 0 \mid v \in V\}$.
- We have $\Omega \subseteq V_{+}$.

GPTs as ordered vector spaces

We were missing crucial information about the vector space:

- We can order V by $a \leq b$ iff $(a, e) \leq(b, e)$ for all $e \in E$.
- This gives a positive cone $V_{+}:=\{v \geq 0 \mid v \in V\}$.
- We have $\Omega \subseteq V_{+}$.
- (In QT, positive cone $=$ \{positive-semidefinite matrices $\}$.)

GPTs as ordered vector spaces

We were missing crucial information about the vector space:

- We can order V by $a \leq b$ iff $(a, e) \leq(b, e)$ for all $e \in E$.
- This gives a positive cone $V_{+}:=\{v \geq 0 \mid v \in V\}$.
- We have $\Omega \subseteq V_{+}$.
- (In QT, positive cone $=$ \{positive-semidefinite matrices $\}.)$
- Can also order the dual V^{*}, to get $E \subseteq\left(V^{*}\right)_{+}$.

GPTs as ordered vector spaces

We were missing crucial information about the vector space:

- We can order V by $a \leq b$ iff $(a, e) \leq(b, e)$ for all $e \in E$.
- This gives a positive cone $V_{+}:=\{v \geq 0 \mid v \in V\}$.
- We have $\Omega \subseteq V_{+}$.
- (In QT, positive cone $=$ \{positive-semidefinite matrices $\}.)$
- Can also order the dual V^{*}, to get $E \subseteq\left(V^{*}\right)_{+}$.
- Desired inner product should hence at least preserve positivity.

Self-dual inner product

Definition

Let V be an ordered vector space.
An inner product $\langle\cdot, \cdot\rangle$ on V is self-dualising when

$$
\langle v, w\rangle \geq 0 \text { for all } w \geq 0 \Longleftrightarrow v \geq 0 .
$$

Self-dual inner product

Definition

Let V be an ordered vector space.
An inner product $\langle\cdot, \cdot\rangle$ on V is self-dualising when

$$
\langle v, w\rangle \geq 0 \text { for all } w \geq 0 \Longleftrightarrow v \geq 0
$$

Equivalently: view $\langle\cdot, \cdot\rangle$ as $\Phi: V \rightarrow V^{*}$ by $\Phi(v)(w)=\langle v, w\rangle$. Then $\langle\cdot, \cdot\rangle$ is self-dual iff Φ is an order isomorphism:

$$
\Phi(v) \geq 0 \Longleftrightarrow v \geq 0
$$

Self-dual inner product

Definition

Let V be an ordered vector space.
An inner product $\langle\cdot, \cdot\rangle$ on V is self-dualising when

$$
\langle v, w\rangle \geq 0 \text { for all } w \geq 0 \Longleftrightarrow v \geq 0
$$

Equivalently: view $\langle\cdot, \cdot\rangle$ as $\Phi: V \rightarrow V^{*}$ by $\Phi(v)(w)=\langle v, w\rangle$. Then $\langle\cdot, \cdot\rangle$ is self-dual iff Φ is an order isomorphism:

$$
\Phi(v) \geq 0 \Longleftrightarrow v \geq 0
$$

Note

The existence of just an order iso $\Phi: V \rightarrow V^{*}$ is known as weak self-duality. Weak SD is necessary for state-teleportation protocols in GPTs (Barnum et al. 2012).

Another useful property of quantum theory

Homogeneity: 'the positive cone is maximally symmetric.'

Another useful property of quantum theory

Homogeneity: 'the positive cone is maximally symmetric.'

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the interior of the positive cone.

Another useful property of quantum theory

Homogeneity: 'the positive cone is maximally symmetric.'

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the interior of the positive cone.
- In a GPT, a state ω is in the interior, if it is completely mixed: $(\omega, e)>0$ for all $e \in E$.

Another useful property of quantum theory

Homogeneity: 'the positive cone is maximally symmetric.'

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the interior of the positive cone.
- In a GPT, a state ω is in the interior, if it is completely mixed: $(\omega, e)>0$ for all $e \in E$.
- In QT, a density matrix ρ is in the interior iff it is full-rank iff it is invertible.

Another useful property of quantum theory

Homogeneity: 'the positive cone is maximally symmetric.'

- In finite dimension, vector spaces have a canonical topology.
- This allows us to talk about the interior of the positive cone.
- In a GPT, a state ω is in the interior, if it is completely mixed: $(\omega, e)>0$ for all $e \in E$.
- In QT, a density matrix ρ is in the interior iff it is full-rank iff it is invertible.

Definition

A cone V_{+}is homogeneous when for any two interior states $v, w \in V_{+}$, there is an order iso Φ, such that $\Phi(v)=w$.

Homogeneity in quantum theory

Definition

A cone V_{+}is homogeneous when for any two interior states $v, w \in V_{+}$, there is an order iso Φ, such that $\Phi(v)=w$.

In quantum theory:

- Let ρ and σ be full-rank (unnormalised) states in $M_{n}(\mathbb{C})_{\text {sa }}$.

Homogeneity in quantum theory

Definition

A cone V_{+}is homogeneous when for any two interior states $v, w \in V_{+}$, there is an order iso Φ, such that $\Phi(v)=w$.

In quantum theory:

- Let ρ and σ be full-rank (unnormalised) states in $M_{n}(\mathbb{C})_{\text {sa }}$.
- Define $\Phi(A):=\sqrt{\sigma} \sqrt{\rho^{-1}} A \sqrt{\rho^{-1}} \sqrt{\sigma}$.

Homogeneity in quantum theory

Definition

A cone V_{+}is homogeneous when for any two interior states $v, w \in V_{+}$, there is an order iso Φ, such that $\Phi(v)=w$.

In quantum theory:

- Let ρ and σ be full-rank (unnormalised) states in $M_{n}(\mathbb{C})_{\text {sa }}$.
- Define $\Phi(A):=\sqrt{\sigma} \sqrt{\rho^{-1}} A \sqrt{\rho^{-1}} \sqrt{\sigma}$.
- Φ is certainly positive. Can also easily construct a positive inverse.
- Hence Φ is an order iso.

Homogeneity in quantum theory

Definition

A cone V_{+}is homogeneous when for any two interior states $v, w \in V_{+}$, there is an order iso Φ, such that $\Phi(v)=w$.

In quantum theory:

- Let ρ and σ be full-rank (unnormalised) states in $M_{n}(\mathbb{C})_{\text {sa }}$.
- Define $\Phi(A):=\sqrt{\sigma} \sqrt{\rho^{-1}} A \sqrt{\rho^{-1}} \sqrt{\sigma}$.
- Φ is certainly positive. Can also easily construct a positive inverse.
- Hence Φ is an order iso.
- And we see that $\Phi(\rho)=\sigma$.

So quantum systems are homogeneous.

Homogeneity operationally

Mathematical meaning of homogeneity:
'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'

Homogeneity operationally

Mathematical meaning of homogeneity:
'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'

Q: What is the operational meaning?

Homogeneity operationally

Mathematical meaning of homogeneity:
'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'

Q: What is the operational meaning?
An answer:
Theorem (based on Barnum et al. 2013)
If a system in a GPT is irreducible and allows universal self-steering, then it is homogeneous.

Homogeneity operationally

Mathematical meaning of homogeneity:
'Group of order-symmetries acts transitively on the interior cone' or 'on an order-theoretic level, every internal point is equivalent'

Q: What is the operational meaning?
An answer:

Theorem (based on Barnum et al. 2013)

If a system in a GPT is irreducible and allows universal self-steering, then it is homogeneous.

Informally, we say a system B universally steers A, if for every bipartite state $\omega_{A B}$ we can induce any* state on A by observing the right effect on B.

$$
\forall\left\langle\sqrt[\omega_{A B}]{\frac{A}{B}} \quad \forall\langle\omega \sqrt[A]{\sqrt{A}} \quad \exists B \mid e\rangle \text { such that }\left\langle\left.\omega_{A B} \frac{A}{B} \right\rvert\, e\right\rangle<\omega \sqrt{A}\right.
$$

Self-duality and homogeneity

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a Euclidean Jordan algebra (EJA).

Self-duality and homogeneity

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a Euclidean Jordan algebra (EJA).
von Neumann, Wigner, Jordan classification
Any EJA is a direct sum of

- $M_{n}(\mathbb{C})_{\text {sa }}$: complex quantum systems

Self-duality and homogeneity

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a Euclidean Jordan algebra (EJA).
von Neumann, Wigner, Jordan classification
Any EJA is a direct sum of

- $M_{n}(\mathbb{C})_{\text {sa }}$: complex quantum systems
- $M_{n}(\mathbb{R})_{\text {sa }}$: real quantum systems

Self-duality and homogeneity

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a Euclidean Jordan algebra (EJA).
von Neumann, Wigner, Jordan classification
Any EJA is a direct sum of

- $M_{n}(\mathbb{C})_{\text {sa }}$: complex quantum systems
- $M_{n}(\mathbb{R})_{\text {sa }}$: real quantum systems
- $M_{n}(\mathbb{H})_{\text {sa }}$: quaternionic quantum systems

Self-duality and homogeneity

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a Euclidean Jordan algebra (EJA).
von Neumann, Wigner, Jordan classification
Any EJA is a direct sum of

- $M_{n}(\mathbb{C})_{\text {sa }}$: complex quantum systems
- $M_{n}(\mathbb{R})_{\text {sa }}$: real quantum systems
- $M_{n}(\mathbb{H})_{\text {sa }}$: quaternionic quantum systems
- $M_{3}(\mathbb{O})_{\text {sa }}$: a 3-dimensional octonionic system

Self-duality and homogeneity

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a Euclidean Jordan algebra (EJA).
von Neumann, Wigner, Jordan classification
Any EJA is a direct sum of

- $M_{n}(\mathbb{C})_{\text {sa }}$: complex quantum systems
- $M_{n}(\mathbb{R})_{\text {sa }}$: real quantum systems
- $M_{n}(\mathbb{H})_{\text {sa }}$: quaternionic quantum systems
- $M_{3}(\mathbb{O})_{\text {sa }}$: a 3-dimensional octonionic system
- spin-factors: systems where Ω is an n-sphere (i.e. 'generalised qubits').

Self-duality and homogeneity

Koecher-Vinberg theorem

Let V be a homogeneous and self-dual ordered vector space. Then V is order-isomorphic to a Euclidean Jordan algebra (EJA).
von Neumann, Wigner, Jordan classification
Any EJA is a direct sum of

- $M_{n}(\mathbb{C})_{\text {sa }}$: complex quantum systems
- $M_{n}(\mathbb{R})_{\text {sa }}$: real quantum systems
- $M_{n}(\mathbb{H})_{\text {sa }}$: quaternionic quantum systems
- $M_{3}(\mathbb{O})_{\text {sa }}$: a 3-dimensional octonionic system
- spin-factors: systems where Ω is an n-sphere (i.e. 'generalised qubits').
\Rightarrow EJAs are 'almost-quantum' systems.

So what now?

- Koecher-Vinberg theorem is very powerful.
- Homogeneity has operational interpretation (steering).
- Self-duality does not.
- Can we replace it with some other nicer/operational property?

Pure transitivity

Definition

In a GPT system, a pure state is a convex extremal element of Ω :

$$
\omega \in \Omega \text { pure iff } \omega=\lambda \omega_{1}+(1-\lambda) \omega_{2} \Longrightarrow \omega_{1}=\omega_{2}
$$

Pure transitivity

Definition

In a GPT system, a pure state is a convex extremal element of Ω :

$$
\omega \in \Omega \text { pure iff } \omega=\lambda \omega_{1}+(1-\lambda) \omega_{2} \Longrightarrow \omega_{1}=\omega_{2}
$$

Definition

In a GPT, a reversible transformation is an affine $\Phi: \Omega \rightarrow \Omega$ which has an inverse Φ^{-1} such that $\Phi \circ \Phi^{-1}=\mathrm{id}=\Phi^{-1} \circ \Phi$.

Pure transitivity

Definition

In a GPT system, a pure state is a convex extremal element of Ω :

$$
\omega \in \Omega \text { pure iff } \omega=\lambda \omega_{1}+(1-\lambda) \omega_{2} \Longrightarrow \omega_{1}=\omega_{2}
$$

Definition

In a GPT, a reversible transformation is an affine $\Phi: \Omega \rightarrow \Omega$ which has an inverse Φ^{-1} such that $\Phi \circ \Phi^{-1}=\mathrm{id}=\Phi^{-1} \circ \Phi$.

In QT:

- Pure states are what you think.
- Reversible transformations correspond to unitaries.

Pure transitivity

Definition

In a GPT system, a pure state is a convex extremal element of Ω :

$$
\omega \in \Omega \text { pure iff } \omega=\lambda \omega_{1}+(1-\lambda) \omega_{2} \Longrightarrow \omega_{1}=\omega_{2}
$$

Definition

In a GPT, a reversible transformation is an affine $\Phi: \Omega \rightarrow \Omega$ which has an inverse Φ^{-1} such that $\Phi \circ \Phi^{-1}=\mathrm{id}=\Phi^{-1} \circ \Phi$.

In QT:

- Pure states are what you think.
- Reversible transformations correspond to unitaries.

Definition

A GPT system satisfies pure transitivity iff for any pure states ω_{1}, ω_{2} we can find a reversible transformation Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Operational interpretation of pure transitivity

Definition

A GPT system satisfies pure transitivity iff for any pure states ω_{1}, ω_{2} we can find a reversible transformation Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Pure transitivity follows from essential uniqueness of purification + pure conditioning (that pure measurements preserve pure states).

Operational interpretation of pure transitivity

Definition

A GPT system satisfies pure transitivity iff for any pure states ω_{1}, ω_{2} we can find a reversible transformation Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Pure transitivity follows from essential uniqueness of purification + pure conditioning (that pure measurements preserve pure states).

More philosophically:

- If we consider pure states the 'real' states of the theory,

Operational interpretation of pure transitivity

Definition

A GPT system satisfies pure transitivity iff for any pure states ω_{1}, ω_{2} we can find a reversible transformation Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Pure transitivity follows from essential uniqueness of purification + pure conditioning (that pure measurements preserve pure states).

More philosophically:

- If we consider pure states the 'real' states of the theory,
- and we consider reversible transformations as the 'real' dynamics,

Operational interpretation of pure transitivity

Definition

A GPT system satisfies pure transitivity iff for any pure states ω_{1}, ω_{2} we can find a reversible transformation Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Pure transitivity follows from essential uniqueness of purification + pure conditioning (that pure measurements preserve pure states).

More philosophically:

- If we consider pure states the 'real' states of the theory,
- and we consider reversible transformations as the 'real' dynamics,
- then failure of pure transitivity would mean two states of a system are not transformable into each other.

Operational interpretation of pure transitivity

Definition

A GPT system satisfies pure transitivity iff for any pure states ω_{1}, ω_{2} we can find a reversible transformation Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Pure transitivity follows from essential uniqueness of purification + pure conditioning (that pure measurements preserve pure states).

More philosophically:

- If we consider pure states the 'real' states of the theory,
- and we consider reversible transformations as the 'real' dynamics,
- then failure of pure transitivity would mean two states of a system are not transformable into each other.
- But then isn't our definition of system is wrong?

Comparing homogeneity and pure transitivity

Recall $\Omega \subseteq V_{+} \subseteq V$.

- $\Phi: V \rightarrow V$ is order iso when $\Phi(v) \geq 0 \Longleftrightarrow v \geq 0$.

Comparing homogeneity and pure transitivity

Recall $\Omega \subseteq V_{+} \subseteq V$.

- $\Phi: V \rightarrow V$ is order iso when $\Phi(v) \geq 0 \Longleftrightarrow v \geq 0$.
- It is a normalised order iso when $\Phi(\Omega)=\Omega$.
- Reversible transformations are normalised order iso's.

Comparing homogeneity and pure transitivity

Recall $\Omega \subseteq V_{+} \subseteq V$.

- $\Phi: V \rightarrow V$ is order iso when $\Phi(v) \geq 0 \Longleftrightarrow v \geq 0$.
- It is a normalised order iso when $\Phi(\Omega)=\Omega$.
- Reversible transformations are normalised order iso's.

Pure transitivity

for all pure $\omega_{1}, \omega_{2} \in \Omega$ there exists a normalised order iso Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Homogeneity

for all interior $v_{1}, v_{2} \in V_{+}$there exists an order iso Φ such that $\Phi\left(v_{1}\right)=v_{2}$.

Comparing homogeneity and pure transitivity

Recall $\Omega \subseteq V_{+} \subseteq V$.

- $\Phi: V \rightarrow V$ is order iso when $\Phi(v) \geq 0 \Longleftrightarrow v \geq 0$.
- It is a normalised order iso when $\Phi(\Omega)=\Omega$.
- Reversible transformations are normalised order iso's.

Pure transitivity

for all pure $\omega_{1}, \omega_{2} \in \Omega$ there exists a normalised order iso Φ such that $\Phi\left(\omega_{1}\right)=\omega_{2}$.

Homogeneity

for all interior $v_{1}, v_{2} \in V_{+}$there exists an order iso Φ such that $\Phi\left(v_{1}\right)=v_{2}$.

Note: order iso's are rescaled probabilistically reversible transformations: $\Phi \circ \Phi^{\sharp}=p \mathrm{id}$

Our results

Theorem
Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

Our results

Theorem
Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

Corollary (via Koecher-Vinberg theorem)

Such a vector space is then order-isomorphic to a Euclidean Jordan algebra.

Some more corollaries

Definition

We say Ω satisfies continuous pure transitivity when for all pure $\omega_{1}, \omega_{2} \in \Omega$ there is a family Φ_{t} of reversible transformations for $t \in[0,1]$ such that $t \mapsto \Phi_{t}\left(v_{1}\right)$ is a continuous path from v_{1} to v_{2}.

Some more corollaries

Definition

We say Ω satisfies continuous pure transitivity when for all pure $\omega_{1}, \omega_{2} \in \Omega$ there is a family Φ_{t} of reversible transformations for $t \in[0,1]$ such that $t \mapsto \Phi_{t}\left(v_{1}\right)$ is a continuous path from v_{1} to v_{2}.

Corollary

The state space of a system that satisfies continuous pure transitivity and universal self-steering is order-isomorphic to a Euclidean Jordan algebra.

Reconstructing quantum theory

We can reconstruct Jordan algebras. But can we restrict to just the quantum systems?

Reconstructing quantum theory

We can reconstruct Jordan algebras. But can we restrict to just the quantum systems?

Definition

We say the composite of systems A and B is locally tomographic if $\operatorname{dim} V_{A B}=\operatorname{dim} V_{A} \cdot \operatorname{dim} V_{B}$ (i.e. when product states/effects span the composite state/effect space).

Reconstructing quantum theory

We can reconstruct Jordan algebras. But can we restrict to just the quantum systems?

Definition

We say the composite of systems A and B is locally tomographic if $\operatorname{dim} V_{A B}=\operatorname{dim} V_{A} \cdot \operatorname{dim} V_{B}$ (i.e. when product states/effects span the composite state/effect space).

Theorem

Let A be a system in a GPT where composites are locally tomographic and every state space is homogeneous and satisfies continuous pure transitivity. Then $V_{A} \cong M_{n}(\mathbb{C})_{\text {sa }}$.

The proof

Theorem
Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^{c}, such that
- $V_{+}^{c}:=V^{c} \cap V_{+}$is homogeneous and self-dual.

The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^{c}, such that
- $V_{+}^{c}:=V^{c} \cap V_{+}$is homogeneous and self-dual.
- It turns out V^{c} is invariant under normalised order iso's of V.
- V^{c} has at least one pure state ω_{c} that is also a pure state of V.

The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^{c}, such that
- $V_{+}^{c}:=V^{c} \cap V_{+}$is homogeneous and self-dual.
- It turns out V^{c} is invariant under normalised order iso's of V.
- V^{c} has at least one pure state ω_{c} that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that $\Phi\left(\omega_{c}\right)=\omega$.

The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^{c}, such that
- $V_{+}^{c}:=V^{c} \cap V_{+}$is homogeneous and self-dual.
- It turns out V^{c} is invariant under normalised order iso's of V.
- V^{c} has at least one pure state ω_{c} that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that $\Phi\left(\omega_{c}\right)=\omega$.
- But $\Phi\left(V^{c}\right)=V^{c}$, so $\omega \in V^{c}$.

The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^{c}, such that
- $V_{+}^{c}:=V^{c} \cap V_{+}$is homogeneous and self-dual.
- It turns out V^{c} is invariant under normalised order iso's of V.
- V^{c} has at least one pure state ω_{c} that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that $\Phi\left(\omega_{c}\right)=\omega$.
- But $\Phi\left(V^{c}\right)=V^{c}$, so $\omega \in V^{c}$.
- Hence V and V^{c} have the same pure states.

The proof

Theorem

Let V be a homogeneous ordered vector space that satisfies pure transitivity. Then V is self-dual.

- Vinberg (1963) showed that each homogeneous V has a non-zero subspace V^{c}, such that
- $V_{+}^{c}:=V^{c} \cap V_{+}$is homogeneous and self-dual.
- It turns out V^{c} is invariant under normalised order iso's of V.
- V^{c} has at least one pure state ω_{c} that is also a pure state of V.
- Now let ω in V be pure. With pure transitivity we find a normalised order iso Φ such that $\Phi\left(\omega_{c}\right)=\omega$.
- But $\Phi\left(V^{c}\right)=V^{c}$, so $\omega \in V^{c}$.
- Hence V and V^{c} have the same pure states.
- Hence $V^{c}=V$.

Conclusion

- Self-duality follows from homogeneity and pure transitivity.

Conclusion

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.

Conclusion

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.
- Also requiring local tomography uniquely pinpoints quantum theory.

Conclusion

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.
- Also requiring local tomography uniquely pinpoints quantum theory.
- Could've instead assumed a 'dynamical correspondence': a mapping from reversible transformations to observables.

Conclusion

- Self-duality follows from homogeneity and pure transitivity.
- Homogeneity and pure transitivity have an operational interpretation, so this gives an operational variant of the Koecher-Vinberg theorem.
- Also requiring local tomography uniquely pinpoints quantum theory.
- Could've instead assumed a 'dynamical correspondence': a mapping from reversible transformations to observables.
- This then hence gives a reconstruction purely in terms of the symmetries of the pure and mixed states.

Thank you for your attention!

Barnum, Ududec, vdW 2023, arXiv:2306.00362
Self-duality and Jordan structure of quantum theory follow from homogeneity and pure transitivity

