Constructing NP#F-complete problems and

#P-hardness of circuit extraction in phase-free ZH
calculus

Piotr Mitosek

School of Computer Science
University of Birmingham

QPL 2023, Paris

1/34

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIiilIE!EIIH%IlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Il Background
Pl Boolean formulae in ZH

3

'S NP#P_complete problems
J

2/34

Background

3/34

/ZH and computational complexity

Some problems arising in ZH calculus are believed to be hard.

@ Given a phase-free ZH diagram, can we find an equivalent
circuit?

@ Given two diagrams, are they equal?

4/34

/ZH and computational complexity

Some problems arising in ZH calculus are believed to be hard.

@ Given a phase-free ZH diagram, can we find an equivalent
circuit?

@ Given two diagrams, are they equal?

This talk:
o Circuit extraction is #P-hard

@ Two problems related to comparing diagrams are
NP#P_complete

4/34

Phase-free ZH calculus
ﬁ { m 0 0
n)(: }m = (2™ x 2™ matrix)
0 0

ﬁ 11
n { :):C }m = (2™ x 2™ matrix)
1

(o] = % (scalar)

5/34

Phase-free ZH calculus
DGRl

>

5/34

Computational Complexity — NP

NP — problems solvable by a polynomial time non-deterministic Turing
Machine (NDTM).

SAT
Input: Variables z1,...,x, and a boolean formula ¢ on (some
of) x1,...,Zn
Output: True when ¢ is satisfiable, False otherwise.

For example, SAT ((z1 A 22) A (21 A —x3)) = True.

6/34

Computational Complexity — #P

#P — problems of the form: given a polynomial time NDTM and an input
a, compute how many runs accept a.

#SAT
Input: Variables x1,...,x, and a boolean formula ¢ on (some
of) x1,...,xpn
Output: Number of satisfying assignments of ¢

For example, #SAT ((z1 A z2) A (z1 A —x3)) = 1.

7/34

Oracles

NP#SAT _ problems solvable by a polytime NDTM with access to oracle
for #SAT. By completeness, this class equals NP#.
An oracle call counts as a single step of computation.

8/34

Boolean formulae in ZH

9/34

Logic in ZH
[[@7]]=<(1))=\1>—>T7“ue [[O—]]z(é)z\O)—)False
»
i |AND|— = >:H} —NOT[— = —O@—
—fcopy| 1 = %j<

10/34

Boolean formulae in ZH

(x1 A xz2) A (1 A =) in ZH:

(a1

3

NOT

11/34

Boolean formulae in ZH

(x1 A xz2) A (1 A =) in ZH:

Ty (a1

T2

T3 4COPY|

3

NOT

One assignment:

False —
True —

True —

11/34

Boolean formulae in ZH

(x1 A xz2) A (1 A =) in ZH:

*

T ry
*
X9 — T2
z3 4COPY| 3
NOT

All assignments:

All possible * (7

assignments 1

11/34

Circuit extraction

12/34

Circuit extraction hardness

Circuit Extraction
Input: A phase-free ZH diagram D proportional to a unitary and
set of unitaries G acting on O(1) qubits.
Output: A polynomial (in size of D) circuit C, constructed from
G, expressing unitary proportional to D, or a message that no such
circuit exists.

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit

Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPlcs.ICALP.2022.119
13/34

Circuit extraction hardness

Circuit Extraction
Input: A phase-free ZH diagram D proportional to a unitary and
set of unitaries G acting on O(1) qubits.
Output: A polynomial (in size of D) circuit C, constructed from
G, expressing unitary proportional to D, or a message that no such
circuit exists.

Circuit Extraction is #P-hard. I

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit
Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPlcs.ICALP.2022.119

13/34

Circuit extraction hardness

Circuit Extraction
Input: A phase-free ZH diagram D proportional to a unitary and
set of unitaries G acting on O(1) qubits.
Output: A polynomial (in size of D) circuit C, constructed from
G, expressing unitary proportional to D, or a message that no such
circuit exists.

Circuit Extraction is #P-hard. I

Proof idea: reduce from #SAT, i.e. show #SAT ¢ FpCircuit Extraction

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit

Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPlcs.ICALP.2022.119
13/34

Circuit extraction hardness — proof

o Given a boolean formula ¢, we encode it in phase-free ZH

14 /34

Circuit extraction hardness — proof

@ Given a boolean formula ¢, we encode it in phase-free ZH

o Let ag,a; be the numbers of unsatisfying and satisfying assignments
of ¢. Then, we have:

o

ao
b=

O

14 /34

Circuit extraction hardness — proof

@ Given a boolean formula ¢, we encode it in phase-free ZH

o Let ag,a; be the numbers of unsatisfying and satisfying assignments
of ¢. Then, we have:

'O

O (o)

14 /34

Circuit extraction hardness — proof finish

(a0 a1
ap —ap

@ Suppose, we have a circuit C' proportional to the above diagram

o We can approximate the matrix representation of C

@ Then, we can find ay, i.e. solve initial instance of #SAT

15/34

Circuit extraction hardness — proof finish

@ Suppose, we have a circuit C' proportional to the above diagram
o We can approximate the matrix representation of C
@ Then, we can find ay, i.e. solve initial instance of #SAT

o Therefore #SAT € [pCircuit Extraction

15/34

NP#P_complete problems

16 /34

More dangling edges

o A diagram with k dangling edges has a matrix representation of the
size 2.

e Given a diagram D, finding a matrix entry in [D] on some given
position is #P-hard and within FP#¥

17/34

More dangling edges

o A diagram with k dangling edges has a matrix representation of the
size 2.

e Given a diagram D, finding a matrix entry in [D] on some given
position is #P-hard and within FP#¥

e Informally: given D, checking some property of all entries of [D]
could be NP#Y-hard (or coNP#F-hard).

17/34

Comparing diagrams

Comparing Diagrams
Input: two diagrams D1, Do with matching dangling edges.
Output: True if [D1] = [D2] and False otherwise.

18/34

Comparing diagrams

Comparing Diagrams
Input: two diagrams D1, Do with matching dangling edges.
Output: True if [D1] = [D2] and False otherwise.

Upper bound coNP#F idea:

Non-deterministically choose a position in matrix representations of Dy
and Ds. Using the oracle, compute entries on such position e; and es.
Reject if e; # e and accept otherwise.

18/34

NP#F-complete problems

State Equality
Input: Two phase-free ZH diagrams D1 and Dy with n dangling
edges each.
Output: T'rue if there exists a state |V') inn qubits computational
basis such that Dy and Dy applied to |V') result in the same scalar,
and False otherwise.

19/34

NP#F-complete problems

State Equality
Input: Two phase-free ZH diagrams D1 and Dy with n dangling
edges each.
Output: T'rue if there exists a state |V') inn qubits computational
basis such that Dy and Dy applied to |V') result in the same scalar,
and False otherwise.

Comparing Diagrams:
Do matrix representations agree on all positions?

State Equality:
Do matrix representations agree on some position?

19/34

NP#F-complete problems

State Equality
Input: Two phase-free ZH diagrams D1 and Dy with n dangling
edges each.
Output: T'rue if there exists a state |V') inn qubits computational
basis such that Dy and Dy applied to |V') result in the same scalar,
and False otherwise.

Comparing Diagrams:
Do matrix representations agree on all positions?

State Equality:
Do matrix representations agree on some position?

State Equality is NP#T-complete. \

19/34

NP#F_hardness proof overview

o Idea: reduce any problem A in NP#" to State Equality.

20/34

NP#F_hardness proof overview

o Idea: reduce any problem A in NP#" to State Equality.

o Take polytime NDTM M with #SAT oracle that recognizes A

20/34

NP#F_hardness proof overview

o Idea: reduce any problem A in NP#" to State Equality.
o Take polytime NDTM M with #SAT oracle that recognizes A

@ Express run of M on an input a as a boolean formula with extra
conditions checking oracle uses

20/34

NP#F_hardness proof overview

Idea: reduce any problem A in NP#F to State Equality.

Take polytime NDTM M with #SAT oracle that recognizes A

Express run of M on an input a as a boolean formula with extra
conditions checking oracle uses

Reduce boolean formula with oracle conditions to a pair of diagrams
forming State Equality instance

20/34

How does M work?

input a

d

Turing #SAT

Machine M oracle

21/34

How does M work?

input a

d

What is #SAT(1))?

Turing #SAT

Machine M oracle

21/34

How does M work?

input a

d

What is #SAT(1))?

It's 21

Turing #SAT

Machine M oracle

21/34

How does M work?

input a

d

What is #SAT(1))?

It's 21
Turing What about p? #SAT
Machine M It's 44700 oracle
And (?
It's 37

21/34

How does M work?

input a

d

What is #SAT(1))?

It's 21
Turing What about p? #SAT
Machine M It's 44700 oracle
And (?
It's 37

1

accept or reject

21/34

Oracle calls

o TM M must communicate with its #SAT oracle.

22/34

Oracle calls

o TM M must communicate with its #SAT oracle.

@ This can be done by passing a sequence of Os and 1s that encode a
boolean formula.

22/34

Oracle calls

o TM M must communicate with its #SAT oracle.

@ This can be done by passing a sequence of Os and 1s that encode a
boolean formula.

input a

{

111010001010101011 . .,

10101

Turing 000101111010111010. .. #SAT
Machine M 1010111010011100 oracle

101001110110101111 . .,

100101

1 ;

accept or reject 22/34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses

23/34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

o Introduce variables like T}, ; jx — True iff i*" cell of Ath tape contains
symbol j at k" step of computation

23/34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

o Introduce variables like T}, ; jx — True iff i*" cell of Ath tape contains
symbol j at k" step of computation

@ Same for head position, state etc.

23/34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

o Introduce variables like T}, ; jx — True iff i*" cell of Ath tape contains
symbol j at k" step of computation

@ Same for head position, state etc.

@ Combine into one formula ¢, similar to the proof of the Cook-Levin
theorem

23/34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

o Introduce variables like T}, ; jx — True iff i*" cell of Ath tape contains
symbol j at k" step of computation

@ Same for head position, state etc.

@ Combine into one formula ¢, similar to the proof of the Cook-Levin
theorem

@ The meaning behind ¢, is as follows:

If ¢q is satisfied by some assignment V', then V' encodes a path
from initial configuration of M on input a, to an accepting con-
figuration, without checking that oracle returned correct data.

23/34

Oracle conditions

To verify oracle uses, we add conditions C 1,Cy2 ..., where Cg ;, stands
for:

If in k" step an oracle is called on some input w, then in the

k + 1t step, M contains the result of running oracle on w.

24/34

Oracle conditions

To verify oracle uses, we add conditions C 1,Cy2 ..., where Cg ;, stands
for:

If in k" step an oracle is called on some input w, then in the

k + 1t step, M contains the result of running oracle on w.

Oracle conditions can be combined into a single condition C,,.

24/34

Oracle conditions

To verify oracle uses, we add conditions C 1,Cy2 ..., where Cg ;, stands
for:

If in k" step an oracle is called on some input w, then in the

k + 1t step, M contains the result of running oracle on w.

Oracle conditions can be combined into a single condition C,,.

¢q and C, can be simultaneously satisfied iff M accepts a. I

24/34

Informal description

¢o under valuation V' means:
Does the run of M on a given by V result in an accepting con-
figuration, ignoring the oracle?

25/34

Informal description

¢o under valuation V' means:
Does the run of M on a given by V result in an accepting con-
figuration, ignoring the oracle?

C, under valuation V means:
In run given by V, M asked for #SAT(¢),#SAT(p),... and
oracle returned ans. On its tapes, M wrote number num.
Does ans = num?

25/34

ZH encoding

o Given ¢, and C, we construct State Equality instance, i.e. two
diagrams D1 and Ds.

26/34

ZH encoding

o Given ¢, and C, we construct State Equality instance, i.e. two
diagrams D1 and Ds.

@ We already know how two encode ¢,.

26/34

ZH encoding

o Given ¢, and C, we construct State Equality instance, i.e. two
diagrams D1 and Ds.

@ We already know how two encode ¢,.

@ To encode C, we construct to gadgets.

26/34

Formula ¢,

Variables
of ¢g

a

For |V) from computational basis:

1), ¢q is satisfied under V
|0}, otherwise

[Mg]1V) = {

27/34

Oracle answers

Variables Gadget
of ¢ for ans

For |V) from computational basis:
[Gadget for ans] |V) = (2F — ans) [0) + ans [1)
where ans is a concatenation of answers to the oracle queries.

28/34

Numbers written as oracle answers

Variables Gadget
of P : for num

For |V) from computational basis:
[Gadget for num] |V) = (2P — num) |0) + num |1)

where num is a concatenation of numbers written as oracle answers.

29/34

Final constructions

Gadget o

for ans

D, = ; Gadget O

for num

0, ¢q unsatisfied under V

) [D2] |V) = num
ans, otherwise

[DiIV) = {

30/34

Related problem

Matrix Entry
Input: A phase-free ZH diagram D with n dangling edges and a
number | € Z[3].
Output: True if matrix interpretation of D contains an entry
equal to [, and False otherwise.

My

a

Gadget
for ans

Gadget
for num

31/34

Summary

32/34

Summary and further work

@ Connections of ZH and computational complexity

33/34

Summary and further work

@ Connections of ZH and computational complexity
o Circuit Extraction is #P-hard

33/34

Summary and further work

@ Connections of ZH and computational complexity
o Circuit Extraction is #P-hard
e State Equality and Matrix Entry are NP#F_complete

33/34

Summary and further work

Connections of ZH and computational complexity
Circuit Extraction is #P-hard
State Equality and Matrix Entry are NP#P-complete

Can we improve circuit extraction bounds?

Does the Turing Machine approach work for other problems?

33/34

Thank you!

	Background
	Boolean formulae in ZH
	Circuit extraction
	NPP-complete problems
	Summary

