
Constructing NP#P-complete problems and
#P-hardness of circuit extraction in phase-free ZH

calculus

Piotr Mitosek

School of Computer Science
University of Birmingham

QPL 2023, Paris

1 / 34

Overview

1. Background

2. Boolean formulae in ZH

3. Circuit extraction

4. NP#P-complete problems

5. Summary

2 / 34

Background

3 / 34

ZH and computational complexity

Some problems arising in ZH calculus are believed to be hard.

Given a phase-free ZH diagram, can we find an equivalent
circuit?

Given two diagrams, are they equal?

This talk:

Circuit extraction is #P-hard

Two problems related to comparing diagrams are
NP#P-complete

4 / 34

ZH and computational complexity

Some problems arising in ZH calculus are believed to be hard.

Given a phase-free ZH diagram, can we find an equivalent
circuit?

Given two diagrams, are they equal?

This talk:

Circuit extraction is #P-hard

Two problems related to comparing diagrams are
NP#P-complete

4 / 34

Phase-free ZH calculus

u

v n m
...

...

}

~ =

1

0 0
. . .

0 0
1

 (2m × 2n matrix)

u

v n m
...

...

}

~ =

1

1 1
. . .

1 1
−1

 (2m × 2n matrix)

J K =
1

2
(scalar)

5 / 34

Phase-free ZH calculus

...
... :=

...
...

...
... :=¬ ...

...

...
...¬ :=

...
...

5 / 34

Computational Complexity – NP

NP – problems solvable by a polynomial time non-deterministic Turing
Machine (NDTM).

SAT
Input: Variables x1, . . . , xn and a boolean formula ϕ on (some
of) x1, . . . , xn
Output: True when ϕ is satisfiable, False otherwise.

For example, SAT ((x1 ∧ x2) ∧ (x1 ∧ ¬x3)) = True.

6 / 34

Computational Complexity – #P

#P – problems of the form: given a polynomial time NDTM and an input
a, compute how many runs accept a.

#SAT
Input: Variables x1, . . . , xn and a boolean formula ϕ on (some
of) x1, . . . , xn
Output: Number of satisfying assignments of ϕ

For example, #SAT((x1 ∧ x2) ∧ (x1 ∧ ¬x3)) = 1.

7 / 34

Oracles

NP#SAT – problems solvable by a polytime NDTM with access to oracle
for #SAT. By completeness, this class equals NP#P.
An oracle call counts as a single step of computation.

8 / 34

Boolean formulae in ZH

9 / 34

Logic in ZH

J ¬ K =
(
0
1

)
= |1⟩ → True J K =

(
1
0

)
= |0⟩ → False

=AND
...

... =NOT ¬

=COPY
...

...

10 / 34

Boolean formulae in ZH

(x1 ∧ x2) ∧ (x1 ∧ ¬x3) in ZH:

x1

x2

x3

AND

NOT

AND

AND →

¬

x1

x2

x3

COPY

COPY

COPY

One assignment:

False

True

True

→

→

→

u

wwwwww
v

¬

¬
¬

}

������
~

=

(
1
0

)

11 / 34

Boolean formulae in ZH

(x1 ∧ x2) ∧ (x1 ∧ ¬x3) in ZH:

x1

x2

x3

AND

NOT

AND

AND →

¬

x1

x2

x3

COPY

COPY

COPY

One assignment:

False

True

True

→

→

→

u

wwwwww
v

¬

¬
¬

}

������
~

=

(
1
0

)

11 / 34

Boolean formulae in ZH

(x1 ∧ x2) ∧ (x1 ∧ ¬x3) in ZH:

x1

x2

x3

AND

NOT

AND

AND →

¬

x1

x2

x3

COPY

COPY

COPY

All assignments:

All possible

assignments

u

wwwwww
v

¬

}

������
~

=

(
7
1

)

11 / 34

Circuit extraction

12 / 34

Circuit extraction hardness

Circuit Extraction
Input: A phase-free ZH diagram D proportional to a unitary and
set of unitaries G acting on O(1) qubits.
Output: A polynomial (in size of D) circuit C, constructed from
G, expressing unitary proportional to D, or a message that no such
circuit exists.

Theorem

Circuit Extraction is #P-hard.

Proof idea: reduce from #SAT, i.e. show #SAT ∈ FPCircuit Extraction.

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit
Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPIcs.ICALP.2022.119

13 / 34

Circuit extraction hardness

Circuit Extraction
Input: A phase-free ZH diagram D proportional to a unitary and
set of unitaries G acting on O(1) qubits.
Output: A polynomial (in size of D) circuit C, constructed from
G, expressing unitary proportional to D, or a message that no such
circuit exists.

Theorem

Circuit Extraction is #P-hard.

Proof idea: reduce from #SAT, i.e. show #SAT ∈ FPCircuit Extraction.

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit
Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPIcs.ICALP.2022.119

13 / 34

Circuit extraction hardness

Circuit Extraction
Input: A phase-free ZH diagram D proportional to a unitary and
set of unitaries G acting on O(1) qubits.
Output: A polynomial (in size of D) circuit C, constructed from
G, expressing unitary proportional to D, or a message that no such
circuit exists.

Theorem

Circuit Extraction is #P-hard.

Proof idea: reduce from #SAT, i.e. show #SAT ∈ FPCircuit Extraction.

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit
Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPIcs.ICALP.2022.119

13 / 34

Circuit extraction hardness – proof

Given a boolean formula ϕ, we encode it in phase-free ZH

Mϕ
...

14 / 34

Circuit extraction hardness – proof

Given a boolean formula ϕ, we encode it in phase-free ZH

Let a0, a1 be the numbers of unsatisfying and satisfying assignments
of ϕ. Then, we have:

u

wwwww
v

Mϕ
...

}

�����
~

=

(
a0
a1

)

14 / 34

Circuit extraction hardness – proof

Given a boolean formula ϕ, we encode it in phase-free ZH

Let a0, a1 be the numbers of unsatisfying and satisfying assignments
of ϕ. Then, we have:

u

wwwwwwwwwwwww
v

Mϕ
...

¬ ¬

}

�������������
~

=

(
a0 a1
a1 −a0

)

14 / 34

Circuit extraction hardness – proof finish

u

wwww
v

Mϕ
...

¬ ¬

}

����
~

=

(
a0 a1
a1 −a0

)

Suppose, we have a circuit C proportional to the above diagram

We can approximate the matrix representation of C

Then, we can find a1, i.e. solve initial instance of #SAT

Therefore #SAT ∈ FPCircuit Extraction.

15 / 34

Circuit extraction hardness – proof finish

u

wwww
v

Mϕ
...

¬ ¬

}

����
~

=

(
a0 a1
a1 −a0

)

Suppose, we have a circuit C proportional to the above diagram

We can approximate the matrix representation of C

Then, we can find a1, i.e. solve initial instance of #SAT

Therefore #SAT ∈ FPCircuit Extraction.

15 / 34

NP#P-complete problems

16 / 34

More dangling edges

A diagram with k dangling edges has a matrix representation of the
size 2k.

Given a diagram D, finding a matrix entry in JDK on some given
position is #P-hard and within FP#P.

Informally: given D, checking some property of all entries of JDK
could be NP#P-hard (or coNP#P-hard).

17 / 34

More dangling edges

A diagram with k dangling edges has a matrix representation of the
size 2k.

Given a diagram D, finding a matrix entry in JDK on some given
position is #P-hard and within FP#P.

Informally: given D, checking some property of all entries of JDK
could be NP#P-hard (or coNP#P-hard).

17 / 34

Comparing diagrams

Comparing Diagrams
Input: two diagrams D1, D2 with matching dangling edges.
Output: True if JD1K = JD2K and False otherwise.

Upper bound coNP#P idea:
Non-deterministically choose a position in matrix representations of D1

and D2. Using the oracle, compute entries on such position e1 and e2.
Reject if e1 ̸= e2 and accept otherwise.

18 / 34

Comparing diagrams

Comparing Diagrams
Input: two diagrams D1, D2 with matching dangling edges.
Output: True if JD1K = JD2K and False otherwise.

Upper bound coNP#P idea:
Non-deterministically choose a position in matrix representations of D1

and D2. Using the oracle, compute entries on such position e1 and e2.
Reject if e1 ̸= e2 and accept otherwise.

18 / 34

NP#P-complete problems

State Equality
Input: Two phase-free ZH diagrams D1 and D2 with n dangling
edges each.
Output: True if there exists a state |V ⟩ in n qubits computational
basis such that D1 and D2 applied to |V ⟩ result in the same scalar,
and False otherwise.

Comparing Diagrams:
Do matrix representations agree on all positions?

State Equality:
Do matrix representations agree on some position?

Theorem

State Equality is NP#P-complete.

19 / 34

NP#P-complete problems

State Equality
Input: Two phase-free ZH diagrams D1 and D2 with n dangling
edges each.
Output: True if there exists a state |V ⟩ in n qubits computational
basis such that D1 and D2 applied to |V ⟩ result in the same scalar,
and False otherwise.

Comparing Diagrams:
Do matrix representations agree on all positions?

State Equality:
Do matrix representations agree on some position?

Theorem

State Equality is NP#P-complete.

19 / 34

NP#P-complete problems

State Equality
Input: Two phase-free ZH diagrams D1 and D2 with n dangling
edges each.
Output: True if there exists a state |V ⟩ in n qubits computational
basis such that D1 and D2 applied to |V ⟩ result in the same scalar,
and False otherwise.

Comparing Diagrams:
Do matrix representations agree on all positions?

State Equality:
Do matrix representations agree on some position?

Theorem

State Equality is NP#P-complete.

19 / 34

NP#P-hardness proof overview

Idea: reduce any problem A in NP#P to State Equality.

Take polytime NDTM M with #SAT oracle that recognizes A

Express run of M on an input a as a boolean formula with extra
conditions checking oracle uses

Reduce boolean formula with oracle conditions to a pair of diagrams
forming State Equality instance

20 / 34

NP#P-hardness proof overview

Idea: reduce any problem A in NP#P to State Equality.

Take polytime NDTM M with #SAT oracle that recognizes A

Express run of M on an input a as a boolean formula with extra
conditions checking oracle uses

Reduce boolean formula with oracle conditions to a pair of diagrams
forming State Equality instance

20 / 34

NP#P-hardness proof overview

Idea: reduce any problem A in NP#P to State Equality.

Take polytime NDTM M with #SAT oracle that recognizes A

Express run of M on an input a as a boolean formula with extra
conditions checking oracle uses

Reduce boolean formula with oracle conditions to a pair of diagrams
forming State Equality instance

20 / 34

NP#P-hardness proof overview

Idea: reduce any problem A in NP#P to State Equality.

Take polytime NDTM M with #SAT oracle that recognizes A

Express run of M on an input a as a boolean formula with extra
conditions checking oracle uses

Reduce boolean formula with oracle conditions to a pair of diagrams
forming State Equality instance

20 / 34

How does M work?

Turing
Machine M

#SAT
oracle

input a

21 / 34

How does M work?

Turing
Machine M

#SAT
oracle

input a

What is #SAT(ψ)?

21 / 34

How does M work?

Turing
Machine M

#SAT
oracle

input a

What is #SAT(ψ)?

It’s 21

21 / 34

How does M work?

Turing
Machine M

#SAT
oracle

input a

What is #SAT(ψ)?

It’s 21

What about ρ?

It’s 44700

And ζ?

It’s 37

...

21 / 34

How does M work?

Turing
Machine M

#SAT
oracle

input a

What is #SAT(ψ)?

It’s 21

What about ρ?

It’s 44700

And ζ?

It’s 37

...
accept or reject

21 / 34

Oracle calls

TM M must communicate with its #SAT oracle.

This can be done by passing a sequence of 0s and 1s that encode a
boolean formula.

22 / 34

Oracle calls

TM M must communicate with its #SAT oracle.

This can be done by passing a sequence of 0s and 1s that encode a
boolean formula.

22 / 34

Oracle calls

TM M must communicate with its #SAT oracle.

This can be done by passing a sequence of 0s and 1s that encode a
boolean formula.

Turing
Machine M

#SAT
oracle

input a

111010001010101011 . . .

10101

000101111010111010 . . .

1010111010011100

101001110110101111 . . .

100101

...
accept or reject 22 / 34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses

:

Introduce variables like Th,i,j,k – True iff ith cell of hth tape contains
symbol j at kth step of computation

Same for head position, state etc.

Combine into one formula ϕa, similar to the proof of the Cook-Levin
theorem

The meaning behind ϕa is as follows:

If ϕa is satisfied by some assignment V , then V encodes a path
from initial configuration of M on input a, to an accepting con-
figuration, without checking that oracle returned correct data.

23 / 34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

Introduce variables like Th,i,j,k – True iff ith cell of hth tape contains
symbol j at kth step of computation

Same for head position, state etc.

Combine into one formula ϕa, similar to the proof of the Cook-Levin
theorem

The meaning behind ϕa is as follows:

If ϕa is satisfied by some assignment V , then V encodes a path
from initial configuration of M on input a, to an accepting con-
figuration, without checking that oracle returned correct data.

23 / 34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

Introduce variables like Th,i,j,k – True iff ith cell of hth tape contains
symbol j at kth step of computation

Same for head position, state etc.

Combine into one formula ϕa, similar to the proof of the Cook-Levin
theorem

The meaning behind ϕa is as follows:

If ϕa is satisfied by some assignment V , then V encodes a path
from initial configuration of M on input a, to an accepting con-
figuration, without checking that oracle returned correct data.

23 / 34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

Introduce variables like Th,i,j,k – True iff ith cell of hth tape contains
symbol j at kth step of computation

Same for head position, state etc.

Combine into one formula ϕa, similar to the proof of the Cook-Levin
theorem

The meaning behind ϕa is as follows:

If ϕa is satisfied by some assignment V , then V encodes a path
from initial configuration of M on input a, to an accepting con-
figuration, without checking that oracle returned correct data.

23 / 34

Boolean formula and oracle conditions

Given input a, we can express run of M on a as a boolean formula,
without verifying oracle uses:

Introduce variables like Th,i,j,k – True iff ith cell of hth tape contains
symbol j at kth step of computation

Same for head position, state etc.

Combine into one formula ϕa, similar to the proof of the Cook-Levin
theorem

The meaning behind ϕa is as follows:

If ϕa is satisfied by some assignment V , then V encodes a path
from initial configuration of M on input a, to an accepting con-
figuration, without checking that oracle returned correct data.

23 / 34

Oracle conditions

To verify oracle uses, we add conditions Ca,1, Ca,2 . . . , where Ca,k stands
for:

If in kth step an oracle is called on some input w, then in the
k + 1th step, M contains the result of running oracle on w.

Oracle conditions can be combined into a single condition Ca.

Theorem

ϕa and Ca can be simultaneously satisfied iff M accepts a.

24 / 34

Oracle conditions

To verify oracle uses, we add conditions Ca,1, Ca,2 . . . , where Ca,k stands
for:

If in kth step an oracle is called on some input w, then in the
k + 1th step, M contains the result of running oracle on w.

Oracle conditions can be combined into a single condition Ca.

Theorem

ϕa and Ca can be simultaneously satisfied iff M accepts a.

24 / 34

Oracle conditions

To verify oracle uses, we add conditions Ca,1, Ca,2 . . . , where Ca,k stands
for:

If in kth step an oracle is called on some input w, then in the
k + 1th step, M contains the result of running oracle on w.

Oracle conditions can be combined into a single condition Ca.

Theorem

ϕa and Ca can be simultaneously satisfied iff M accepts a.

24 / 34

Informal description

ϕa under valuation V means:
Does the run of M on a given by V result in an accepting con-
figuration, ignoring the oracle?

Ca under valuation V means:

In run given by V , M asked for #SAT(ψ),#SAT(ρ), . . . and
oracle returned ans. On its tapes, M wrote number num.
Does ans = num?

25 / 34

Informal description

ϕa under valuation V means:
Does the run of M on a given by V result in an accepting con-
figuration, ignoring the oracle?

Ca under valuation V means:

In run given by V , M asked for #SAT(ψ),#SAT(ρ), . . . and
oracle returned ans. On its tapes, M wrote number num.
Does ans = num?

25 / 34

ZH encoding

Given ϕa and Ca we construct State Equality instance, i.e. two
diagrams D1 and D2.

We already know how two encode ϕa.

To encode Ca we construct to gadgets.

26 / 34

ZH encoding

Given ϕa and Ca we construct State Equality instance, i.e. two
diagrams D1 and D2.

We already know how two encode ϕa.

To encode Ca we construct to gadgets.

26 / 34

ZH encoding

Given ϕa and Ca we construct State Equality instance, i.e. two
diagrams D1 and D2.

We already know how two encode ϕa.

To encode Ca we construct to gadgets.

26 / 34

Formula ϕa

Variables

of ϕa
Mϕa

...

For |V ⟩ from computational basis:

JMϕaK |V ⟩ =

{
|1⟩ , ϕa is satisfied under V

|0⟩ , otherwise

27 / 34

Oracle answers

Variables

of ϕa
... Gadget

for ans

For |V ⟩ from computational basis:

JGadget for ansK |V ⟩ =
(
2P − ans

)
|0⟩+ ans |1⟩

where ans is a concatenation of answers to the oracle queries.

28 / 34

Numbers written as oracle answers

Variables

of ϕa
... Gadget

for num

For |V ⟩ from computational basis:

JGadget for numK |V ⟩ =
(
2P − num

)
|0⟩+ num |1⟩

where num is a concatenation of numbers written as oracle answers.

29 / 34

Final constructions

Mϕa

...

...

...

¬

¬

=D1

Gadget
for ans

... ¬=D2
Gadget
for num

JD1K |V ⟩ =

{
0, ϕa unsatisfied under V

ans, otherwise
JD2K |V ⟩ = num

30 / 34

Related problem

Matrix Entry
Input: A phase-free ZH diagram D with n dangling edges and a
number l ∈ Z[12].
Output: True if matrix interpretation of D contains an entry
equal to l, and False otherwise.

Mϕa

...

...

...=D

...

¬

¬

Gadget
for ans

Gadget
for num

31 / 34

Summary

32 / 34

Summary and further work

Connections of ZH and computational complexity

Circuit Extraction is #P-hard

State Equality and Matrix Entry are NP#P-complete

Can we improve circuit extraction bounds?

Does the Turing Machine approach work for other problems?

33 / 34

Summary and further work

Connections of ZH and computational complexity

Circuit Extraction is #P-hard

State Equality and Matrix Entry are NP#P-complete

Can we improve circuit extraction bounds?

Does the Turing Machine approach work for other problems?

33 / 34

Summary and further work

Connections of ZH and computational complexity

Circuit Extraction is #P-hard

State Equality and Matrix Entry are NP#P-complete

Can we improve circuit extraction bounds?

Does the Turing Machine approach work for other problems?

33 / 34

Summary and further work

Connections of ZH and computational complexity

Circuit Extraction is #P-hard

State Equality and Matrix Entry are NP#P-complete

Can we improve circuit extraction bounds?

Does the Turing Machine approach work for other problems?

33 / 34

Thank you!

34 / 34

	Background
	Boolean formulae in ZH
	Circuit extraction
	NPP-complete problems
	Summary

