Constructing NP\#P -complete problems and \#P-hardness of circuit extraction in phase-free ZH calculus

Piotr Mitosek

School of Computer Science
University of Birmingham
QPL 2023, Paris

1. Background
2. Boolean formulae in ZH
3. Circuit extraction
4. $\mathrm{NP}^{\# \mathrm{P}}$-complete problems
5. Summary

Background

ZH and computational complexity

Some problems arising in ZH calculus are believed to be hard.

- Given a phase-free ZH diagram, can we find an equivalent circuit?
- Given two diagrams, are they equal?
- Circuit extraction is \#P-hard
- Two problems related to comparing diagrams are NP\#P-complete

ZH and computational complexity

Some problems arising in ZH calculus are believed to be hard.

- Given a phase-free ZH diagram, can we find an equivalent circuit?
- Given two diagrams, are they equal?

This talk:

- Circuit extraction is \#P-hard
- Two problems related to comparing diagrams are NP ${ }^{\# P}$-complete

Phase-free ZH calculus

$$
\begin{aligned}
& \text { Un\{ }
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \rrbracket=\frac{1}{2} \text { (scalar) }
\end{aligned}
$$

Phase-free ZH calculus

Computational Complexity - NP

NP - problems solvable by a polynomial time non-deterministic Turing Machine (NDTM).

SAT

Input: Variables x_{1}, \ldots, x_{n} and a boolean formula ϕ on (some of) x_{1}, \ldots, x_{n}
Output: True when ϕ is satisfiable, False otherwise.

For example, $\operatorname{SAT}\left(\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{3}\right)\right)=$ True.

Computational Complexity - \#P

\#P - problems of the form: given a polynomial time NDTM and an input a, compute how many runs accept a.
\#SAT
Input: Variables x_{1}, \ldots, x_{n} and a boolean formula ϕ on (some of) x_{1}, \ldots, x_{n}
Output: Number of satisfying assignments of ϕ

For example, $\# \operatorname{SAT}\left(\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{3}\right)\right)=1$.

Oracles

NP\#SAT - problems solvable by a polytime NDTM with access to oracle for \#SAT. By completeness, this class equals NP\#P.
An oracle call counts as a single step of computation.

Boolean formulae in ZH

Logic in ZH

$$
\llbracket \bigcirc \rrbracket \rrbracket=\binom{0}{1}=|1\rangle \rightarrow \text { True } \quad \llbracket \bigcirc-\rrbracket=\binom{1}{0}=|0\rangle \rightarrow \text { False }
$$

Boolean formulae in ZH

$(x 1 \wedge x 2 \wedge(x) \wedge$ in

One assignment:

Boolean formulae in ZH

$\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{3}\right)$ in $\mathrm{ZH}:$

One assignment:

Boolean formulae in ZH

$$
\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{3}\right) \text { in } \mathrm{ZH}:
$$

All assignments:

Circuit extraction

Circuit extraction hardness

Circuit Extraction

Input: A phase-free ZH diagram D proportional to a unitary and set of unitaries \mathcal{G} acting on $O(1)$ qubits.
Output: A polynomial (in size of D) circuit C, constructed from \mathcal{G}, expressing unitary proportional to D, or a message that no such circuit exists.

Niel de Beaudrap, Aleks Kissinger \& John van de Wetering (2022): Circuit Extraction for ZX-diagrams Can Be \#P-hard. 10.4230/LIPIcs.ICALP.2022.119

Circuit extraction hardness

Circuit Extraction

Input: A phase-free ZH diagram D proportional to a unitary and set of unitaries \mathcal{G} acting on $O(1)$ qubits.
Output: A polynomial (in size of D) circuit C, constructed from \mathcal{G}, expressing unitary proportional to D, or a message that no such circuit exists.

Theorem

Circuit Extraction is \#P-hard.

Niel de Beaudrap, Aleks Kissinger \& John van de Wetering (2022): Circuit Extraction for ZX-diagrams Can Be \#P-hard. 10.4230/LIPIcs.ICALP.2022.119

Circuit extraction hardness

Circuit Extraction

Input: A phase-free ZH diagram D proportional to a unitary and set of unitaries \mathcal{G} acting on $O(1)$ qubits.
Output: A polynomial (in size of D) circuit C, constructed from \mathcal{G}, expressing unitary proportional to D, or a message that no such circuit exists.

Theorem

Circuit Extraction is \#P-hard.

Proof idea: reduce from $\# S A T$, i.e. show $\# S A T \in \mathrm{FP}^{\text {Circuit Extraction }}$.

Niel de Beaudrap, Aleks Kissinger \& John van de Wetering (2022): Circuit Extraction for ZX-diagrams Can Be \#P-hard. 10.4230/LIPIcs.ICALP.2022.119

Circuit extraction hardness - proof

- Given a boolean formula ϕ, we encode it in phase-free ZH

Circuit extraction hardness - proof

- Given a boolean formula ϕ, we encode it in phase-free ZH
- Let a_{0}, a_{1} be the numbers of unsatisfying and satisfying assignments of ϕ. Then, we have:

Circuit extraction hardness - proof

- Given a boolean formula ϕ, we encode it in phase-free ZH
- Let a_{0}, a_{1} be the numbers of unsatisfying and satisfying assignments of ϕ. Then, we have:

Circuit extraction hardness - proof finish

- Suppose, we have a circuit C proportional to the above diagram
- We can approximate the matrix representation of C
- Then, we can find a_{1}, i.e. solve initial instance of \#SAT
- Therefore $\# S A T \in F P^{\text {Circuit Extraction }}$

Circuit extraction hardness - proof finish

- Suppose, we have a circuit C proportional to the above diagram
- We can approximate the matrix representation of C
- Then, we can find a_{1}, i.e. solve initial instance of \#SAT
- Therefore $\# S A T \in \mathrm{FP}^{\text {Circuit Extraction }}$.

NP\#P -complete problems

More dangling edges

- A diagram with k dangling edges has a matrix representation of the size 2^{k}.
- Given a diagram D, finding a matrix entry in $\llbracket D \rrbracket$ on some given position is \#P-hard and within $\mathrm{FP}^{\# P}$.
- Informally: given D, checking some property of all entries of $\llbracket D \rrbracket$ could be NP \#P-hard (or coNP ${ }^{\# P}$-hard).

More dangling edges

- A diagram with k dangling edges has a matrix representation of the size 2^{k}.
- Given a diagram D, finding a matrix entry in $\llbracket D \rrbracket$ on some given position is \#P-hard and within $\mathrm{FP}^{\# P}$.
- Informally: given D, checking some property of all entries of $\llbracket D \rrbracket$ could be NP \#P -hard (or coNP ${ }^{\# P}$-hard).

Comparing diagrams

Comparing Diagrams

Input: two diagrams D_{1}, D_{2} with matching dangling edges. Output: True if $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$ and False otherwise.

Upper bound coNP\#P idea
 Non-deterministically choose a position in matrix representations of D_{1} and D_{2}. Using the oracle, compute entries on such position e_{1} and e_{2} Reject if $e_{1} \neq e_{2}$ and accept otherwise.

Comparing diagrams

Comparing Diagrams

Input: two diagrams D_{1}, D_{2} with matching dangling edges.
Output: True if $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$ and False otherwise.

Upper bound coNP\#P idea:
Non-deterministically choose a position in matrix representations of D_{1} and D_{2}. Using the oracle, compute entries on such position e_{1} and e_{2}. Reject if $e_{1} \neq e_{2}$ and accept otherwise.

NP \#P-complete problems

State Equality

Input: Two phase-free ZH diagrams D_{1} and D_{2} with n dangling edges each.
Output: True if there exists a state $|V\rangle$ in n qubits computational basis such that D_{1} and D_{2} applied to $|V\rangle$ result in the same scalar, and False otherwise.

State Equality:
Do matrix representations agree on some position?
Theorem
State Equality is $\mathrm{NP}^{\# \mathrm{P}}$-complete.

NP \#P-complete problems

State Equality

Input: Two phase-free ZH diagrams D_{1} and D_{2} with n dangling edges each.
Output: True if there exists a state $|V\rangle$ in n qubits computational basis such that D_{1} and D_{2} applied to $|V\rangle$ result in the same scalar, and False otherwise.

Comparing Diagrams:
Do matrix representations agree on all positions?

State Equality:
Do matrix representations agree on some position?
\square

NP \#P-complete problems

State Equality

Input: Two phase-free ZH diagrams D_{1} and D_{2} with n dangling edges each.
Output: True if there exists a state $|V\rangle$ in n qubits computational basis such that D_{1} and D_{2} applied to $|V\rangle$ result in the same scalar, and False otherwise.

Comparing Diagrams:
Do matrix representations agree on all positions?

State Equality:
Do matrix representations agree on some position?

Theorem

State Equality is $\mathrm{NP}^{\# \mathrm{P}}$-complete.

NP \#P -hardness proof overview

- Idea: reduce any problem A in $\mathrm{NP}^{\# \mathrm{P}}$ to State Equality.
- Take polytime NDTM \mathcal{M} with \#SAT oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance

NP \#P -hardness proof overview

- Idea: reduce any problem A in $\mathrm{NP}^{\# \mathrm{P}}$ to State Equality.
- Take polytime NDTM \mathcal{M} with \#SAT oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance

NP \#P -hardness proof overview

- Idea: reduce any problem A in $\mathrm{NP}^{\# \mathrm{P}}$ to State Equality.
- Take polytime NDTM \mathcal{M} with \#SAT oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance

NP \#P -hardness proof overview

- Idea: reduce any problem A in $\mathrm{NP}^{\# \mathrm{P}}$ to State Equality.
- Take polytime NDTM \mathcal{M} with \#SAT oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance
input a
\downarrow

How does \mathcal{M} work?

Oracle calls

- TM \mathcal{M} must communicate with its \#SAT oracle.
- This can be done by passing a sequence of 0 s and 1 s that encode a boolean formula.

Oracle calls

- TM \mathcal{M} must communicate with its \#SAT oracle.
- This can be done by passing a sequence of 0 s and 1 s that encode a boolean formula.

Oracle calls

- TM \mathcal{M} must communicate with its \#SAT oracle.
- This can be done by passing a sequence of 0 s and 1 s that encode a boolean formula.

Boolean formula and oracle conditions

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses

Boolean formula and oracle conditions

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

- Introduce variables like $T_{h, i, j, k}-$ True iff $i^{\text {th }}$ cell of $h^{\text {th }}$ tape contains symbol j at $k^{\text {th }}$ step of computation

Boolean formula and oracle conditions

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

- Introduce variables like $T_{h, i, j, k}-$ True iff $i^{\text {th }}$ cell of $h^{\text {th }}$ tape contains symbol j at $k^{\text {th }}$ step of computation
- Same for head position, state etc.

Boolean formula and oracle conditions

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

- Introduce variables like $T_{h, i, j, k}-$ True iff $i^{\text {th }}$ cell of $h^{\text {th }}$ tape contains symbol j at $k^{\text {th }}$ step of computation
- Same for head position, state etc.
- Combine into one formula ϕ_{a}, similar to the proof of the Cook-Levin theorem

Boolean formula and oracle conditions

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

- Introduce variables like $T_{h, i, j, k}-$ True iff $i^{\text {th }}$ cell of $h^{\text {th }}$ tape contains symbol j at $k^{\text {th }}$ step of computation
- Same for head position, state etc.
- Combine into one formula ϕ_{a}, similar to the proof of the Cook-Levin theorem
- The meaning behind ϕ_{a} is as follows: If ϕ_{a} is satisfied by some assignment V, then V encodes a path from initial configuration of \mathcal{M} on input a, to an accepting configuration, without checking that oracle returned correct data.

Oracle conditions

To verify oracle uses, we add conditions $C_{a, 1}, C_{a, 2} \ldots$, where $C_{a, k}$ stands for:

If in $k^{\text {th }}$ step an oracle is called on some input w, then in the $k+1^{\text {th }}$ step, \mathcal{M} contains the result of running oracle on w.

Oracle conditions can be combined into a single condition \mathcal{C}_{a}.

Theorem and \mathcal{C}_{n} can be simultaneously satisfied iff \mathcal{M} accepts a.

Oracle conditions

To verify oracle uses, we add conditions $C_{a, 1}, C_{a, 2} \ldots$, where $C_{a, k}$ stands for:

If in $k^{\text {th }}$ step an oracle is called on some input w, then in the $k+1^{\text {th }}$ step, \mathcal{M} contains the result of running oracle on w.

Oracle conditions can be combined into a single condition \mathcal{C}_{a}.
\square
Theorem and \mathcal{C}_{a} can be simultaneously satisfied iff \mathcal{M} accepts a.

Oracle conditions

To verify oracle uses, we add conditions $C_{a, 1}, C_{a, 2} \ldots$, where $C_{a, k}$ stands for:

If in $k^{\text {th }}$ step an oracle is called on some input w, then in the $k+1^{\text {th }}$ step, \mathcal{M} contains the result of running oracle on w.

Oracle conditions can be combined into a single condition \mathcal{C}_{a}.

Theorem

ϕ_{a} and \mathcal{C}_{a} can be simultaneously satisfied iff \mathcal{M} accepts a.

Informal description

ϕ_{a} under valuation V means:
Does the run of \mathcal{M} on a given by V result in an accepting configuration, ignoring the oracle?

under valuation V means:

In run given by V, \mathcal{M} asked for \#SAT $(\psi), \# S A T(\rho), \ldots$ and
oracle returned ans. On its tapes, \mathcal{M} wrote number num.
Does ans $=$ num?

Informal description

ϕ_{a} under valuation V means:
Does the run of \mathcal{M} on a given by V result in an accepting configuration, ignoring the oracle?
\mathcal{C}_{a} under valuation V means:
In run given by V, \mathcal{M} asked for $\# \operatorname{SAT}(\psi), \# \operatorname{SAT}(\rho), \ldots$ and oracle returned ans. On its tapes, \mathcal{M} wrote number num. Does ans $=$ num?

ZH encoding

- Given ϕ_{a} and \mathcal{C}_{a} we construct State Equality instance, i.e. two diagrams D_{1} and D_{2}.
- We already know how two encode ϕ_{a}.
- To encode \mathcal{C}_{a} we construct to gadgets.

ZH encoding

- Given ϕ_{a} and \mathcal{C}_{a} we construct State Equality instance, i.e. two diagrams D_{1} and D_{2}.
- We already know how two encode ϕ_{a}.
- To encode \mathcal{C}_{a} we construct to gadgets.

ZH encoding

- Given ϕ_{a} and \mathcal{C}_{a} we construct State Equality instance, i.e. two diagrams D_{1} and D_{2}.
- We already know how two encode ϕ_{a}.
- To encode \mathcal{C}_{a} we construct to gadgets.

Formula ϕ_{a}

For $|V\rangle$ from computational basis:

$$
\llbracket M_{\phi_{a}} \rrbracket|V\rangle= \begin{cases}|1\rangle, & \phi_{a} \text { is satisfied under } V \\ |0\rangle, & \text { otherwise }\end{cases}
$$

Oracle answers

For $|V\rangle$ from computational basis:

$$
\llbracket \text { Gadget for ans } \rrbracket|V\rangle=\left(2^{P}-a n s\right)|0\rangle+\text { ans }|1\rangle
$$

where ans is a concatenation of answers to the oracle queries.

Numbers written as oracle answers

For $|V\rangle$ from computational basis:

$$
\llbracket \text { Gadget for num』 }|V\rangle=\left(2^{P}-\text { num }\right)|0\rangle+\text { num }|1\rangle
$$

where num is a concatenation of numbers written as oracle answers.

Final constructions

Related problem

Matrix Entry

Input: A phase-free ZH diagram D with n dangling edges and a number $l \in \mathbb{Z}\left[\frac{1}{2}\right]$.
Output: True if matrix interpretation of D contains an entry equal to l, and False otherwise.

Summary

Summary and further work

- Connections of ZH and computational complexity
- Circuit Extraction is \#P-hard
- State Equality and Matrix Entry are NP ${ }^{\# P}$-complete
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

Summary and further work

- Connections of ZH and computational complexity
- Circuit Extraction is \#P-hard
- State Equality and Matrix Entry are NP ${ }^{\# P}$-complete
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

Summary and further work

- Connections of ZH and computational complexity
- Circuit Extraction is \#P-hard
- State Equality and Matrix Entry are NP ${ }^{\# P}$-complete
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

Summary and further work

- Connections of ZH and computational complexity
- Circuit Extraction is \#P-hard
- State Equality and Matrix Entry are NP ${ }^{\# P}$-complete
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

Thank you!

