Constructing $NP^{\#P}$ -complete problems and #P-hardness of circuit extraction in phase-free ZH calculus

Piotr Mitosek

School of Computer Science University of Birmingham

QPL 2023, Paris

Overview

- 1. Background
- 2. Boolean formulae in ZH
- 3. Circuit extraction
- 4. $NP^{\#P}$ -complete problems
- 5. Summary

Background

Some problems arising in ZH calculus are believed to be hard.

 $\bullet\,$ Given a phase-free ZH diagram, can we find an equivalent circuit?

• Given two diagrams, are they equal?

This talk:

 \bullet Circuit extraction is $\#\mathrm{P}\text{-hard}$

 \bullet Two problems related to comparing diagrams are $\mathrm{NP}^{\#\mathrm{P}}\text{-}\mathsf{complete}$

Some problems arising in ZH calculus are believed to be hard.

 $\bullet\,$ Given a phase-free ZH diagram, can we find an equivalent circuit?

• Given two diagrams, are they equal?

This talk:

 \bullet Circuit extraction is $\# \mathrm{P}\text{-hard}$

 \bullet Two problems related to comparing diagrams are $\mathrm{NP}^{\#\mathrm{P}}\text{-}\mathsf{complete}$

Phase-free ZH calculus

$$\begin{bmatrix} n \left\{ \begin{array}{cc} \vdots \\ \vdots \\ \end{array} \right\} m \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ & \ddots & \\ 0 & 0 & _{1} \end{pmatrix} \quad (2^{m} \times 2^{n} \text{ matrix})$$
$$\begin{bmatrix} n \left\{ \begin{array}{cc} \vdots \\ \vdots \\ \end{array} \right\} m \end{bmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ & \ddots & \\ 1 & 1 & _{-1} \end{pmatrix} \quad (2^{m} \times 2^{n} \text{ matrix})$$
$$\begin{bmatrix} \bigstar \end{bmatrix} = \frac{1}{2} \text{ (scalar)}$$

Phase-free ZH calculus

 NP – problems solvable by a polynomial time non-deterministic Turing Machine (NDTM).

SAT Input: Variables x_1, \ldots, x_n and a boolean formula ϕ on (some of) x_1, \ldots, x_n Output: True when ϕ is satisfiable, False otherwise.

For example, SAT $((x_1 \land x_2) \land (x_1 \land \neg x_3)) = True$.

#P – problems of the form: given a polynomial time NDTM and an input a, compute how many runs accept a.

#SAT **Input**: Variables x_1, \ldots, x_n and a boolean formula ϕ on (some of) x_1, \ldots, x_n **Output**: Number of satisfying assignments of ϕ

For example, #SAT $((x_1 \land x_2) \land (x_1 \land \neg x_3)) = 1$.

Oracles

 $\rm NP^{\#SAT}$ – problems solvable by a polytime NDTM with access to oracle for $\#\rm SAT.$ By completeness, this class equals $\rm NP^{\#P}.$ An oracle call counts as a single step of computation.

Logic in ZH

 $(x_1 \wedge x_2) \wedge (x_1 \wedge \neg x_3)$ in ZH:

One assignment:

 $(x_1 \wedge x_2) \wedge (x_1 \wedge \neg x_3)$ in ZH:

One assignment:

 $(x_1 \wedge x_2) \wedge (x_1 \wedge \neg x_3)$ in ZH:

All assignments:

Circuit extraction

Circuit extraction hardness

Circuit Extraction

Input: A phase-free ZH diagram D proportional to a unitary and set of unitaries \mathcal{G} acting on O(1) qubits.

Output: A polynomial (in size of D) circuit C, constructed from \mathcal{G} , expressing unitary proportional to D, or a message that no such circuit exists.

Theorem

Circuit Extraction *is* #P-hard.

Proof idea: reduce from $\#\mathrm{SAT}$, i.e. show $\#\mathrm{SAT}\in\mathrm{FP}^{\mathrm{Circuit}\,\,\mathrm{Extraction}}$.

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPIcs.ICALP.2022.119

Circuit extraction hardness

Circuit Extraction

Input: A phase-free ZH diagram D proportional to a unitary and set of unitaries \mathcal{G} acting on O(1) qubits.

Output: A polynomial (in size of D) circuit C, constructed from \mathcal{G} , expressing unitary proportional to D, or a message that no such circuit exists.

Theorem

Circuit Extraction *is* #P-*hard*.

Proof idea: reduce from $\#\mathrm{SAT}$, i.e. show $\#\mathrm{SAT}\in\mathrm{FP}^{\mathrm{Circuit}\;\mathrm{Extraction}}$.

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPIcs.ICALP.2022.119

Circuit extraction hardness

Circuit Extraction

Input: A phase-free ZH diagram D proportional to a unitary and set of unitaries G acting on O(1) qubits.

Output: A polynomial (in size of D) circuit C, constructed from \mathcal{G} , expressing unitary proportional to D, or a message that no such circuit exists.

Theorem

Circuit Extraction is #P-hard.

Proof idea: reduce from #SAT, i.e. show $\#SAT \in FP^{Circuit \ Extraction}$.

Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit Extraction for ZX-diagrams Can Be #P-hard. 10.4230/LIPIcs.ICALP.2022.119

• Given a boolean formula ϕ , we encode it in phase-free ZH

- Given a boolean formula ϕ , we encode it in phase-free ZH
- Let a₀, a₁ be the numbers of unsatisfying and satisfying assignments of φ. Then, we have:

Circuit extraction hardness - proof

- Given a boolean formula ϕ , we encode it in phase-free ZH
- Let a₀, a₁ be the numbers of unsatisfying and satisfying assignments of φ. Then, we have:

Circuit extraction hardness - proof finish

• Suppose, we have a circuit C proportional to the above diagram

- We can approximate the matrix representation of C
- Then, we can find a_1 , i.e. solve initial instance of #SAT

 \bullet Therefore $\# \mathrm{SAT} \in \mathrm{FP}^{\mathrm{Circuit}\ \mathrm{Extraction}}$

Circuit extraction hardness - proof finish

- Suppose, we have a circuit C proportional to the above diagram
- We can approximate the matrix representation of C
- Then, we can find a_1 , i.e. solve initial instance of #SAT
- Therefore $\#SAT \in FP^{Circuit \ Extraction}$.

$NP^{\#P}$ -complete problems

More dangling edges

- A diagram with k dangling edges has a matrix representation of the size 2^k.
- Given a diagram D, finding a matrix entry in $\llbracket D \rrbracket$ on some given position is #P-hard and within $FP^{\#P}$.
- Informally: given *D*, checking some property of all entries of $\llbracket D \rrbracket$ could be NP^{#P}-hard (or coNP^{#P}-hard).

More dangling edges

- A diagram with k dangling edges has a matrix representation of the size 2^k .
- Given a diagram D, finding a matrix entry in $\llbracket D \rrbracket$ on some given position is #P-hard and within $FP^{\#P}$.
- Informally: given *D*, checking some property of all entries of $\llbracket D \rrbracket$ could be NP^{#P}-hard (or coNP^{#P}-hard).

Comparing diagrams

Comparing Diagrams **Input**: two diagrams D_1, D_2 with matching dangling edges. **Output**: True if $[D_1] = [D_2]$ and False otherwise.

Upper bound $coNP^{\#P}$ idea:

Non-deterministically choose a position in matrix representations of D_1 and D_2 . Using the oracle, compute entries on such position e_1 and e_2 . Reject if $e_1 \neq e_2$ and accept otherwise.

Comparing Diagrams **Input**: two diagrams D_1, D_2 with matching dangling edges. **Output**: True if $[D_1] = [D_2]$ and False otherwise.

Upper bound $coNP^{\#P}$ idea:

Non-deterministically choose a position in matrix representations of D_1 and D_2 . Using the oracle, compute entries on such position e_1 and e_2 . Reject if $e_1 \neq e_2$ and accept otherwise.

$\mathrm{NP}^{\#P}\text{-}\mathsf{complete}$ problems

State Equality

Input: Two phase-free ZH diagrams D_1 and D_2 with n dangling edges each.

Output: True if there exists a state $|V\rangle$ in n qubits computational basis such that D_1 and D_2 applied to $|V\rangle$ result in the same scalar, and False otherwise.

Comparing Diagrams: Do matrix representations agree on **all** positions?

State Equality: Do matrix representations agree on **some** position?

Theorem

State Equality is $NP^{\#P}$ -complete.

$\mathrm{NP}^{\#P}\text{-}\mathsf{complete}$ problems

State Equality

Input: Two phase-free ZH diagrams D_1 and D_2 with n dangling edges each.

Output: True if there exists a state $|V\rangle$ in n qubits computational basis such that D_1 and D_2 applied to $|V\rangle$ result in the same scalar, and False otherwise.

Comparing Diagrams: Do matrix representations agree on **all** positions?

State Equality: Do matrix representations agree on **some** position?

Theorem

State Equality is $NP^{\#P}$ -complete.

$\mathrm{NP}^{\#P}\text{-}\mathsf{complete}$ problems

State Equality

Input: Two phase-free ZH diagrams D_1 and D_2 with n dangling edges each.

Output: True if there exists a state $|V\rangle$ in n qubits computational basis such that D_1 and D_2 applied to $|V\rangle$ result in the same scalar, and False otherwise.

Comparing Diagrams: Do matrix representations agree on **all** positions?

State Equality: Do matrix representations agree on **some** position?

Theorem

State Equality is $NP^{\#P}$ -complete.

• Idea: reduce any problem A in NP^{#P} to State Equality.

- Take polytime NDTM ${\mathcal M}$ with $\#{\rm SAT}$ oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance

- Idea: reduce any problem A in $NP^{\#P}$ to State Equality.
- Take polytime NDTM ${\mathcal M}$ with $\#{\rm SAT}$ oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance

- Idea: reduce any problem A in $NP^{\#P}$ to State Equality.
- Take polytime NDTM $\mathcal M$ with #SAT oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance

- Idea: reduce any problem A in $NP^{\#P}$ to State Equality.
- Take polytime NDTM $\mathcal M$ with #SAT oracle that recognizes A
- Express run of \mathcal{M} on an input a as a boolean formula with extra conditions checking oracle uses
- Reduce boolean formula with oracle conditions to a pair of diagrams forming State Equality instance

i

accept or reject

Oracle calls

\bullet TM ${\cal M}$ must communicate with its $\#{\rm SAT}$ oracle.

• This can be done by passing a sequence of 0s and 1s that encode a boolean formula.

Oracle calls

- TM \mathcal{M} must communicate with its #SAT oracle.
- This can be done by passing a sequence of 0s and 1s that encode a boolean formula.

Oracle calls

- \bullet TM ${\cal M}$ must communicate with its $\#{\rm SAT}$ oracle.
- This can be done by passing a sequence of 0s and 1s that encode a boolean formula.

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

• Introduce variables like $T_{h,i,j,k} - True$ iff i^{th} cell of h^{th} tape contains symbol j at k^{th} step of computation

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

- Introduce variables like $T_{h,i,j,k} True$ iff i^{th} cell of h^{th} tape contains symbol j at k^{th} step of computation
- Same for head position, state etc.

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

- Introduce variables like $T_{h,i,j,k} True$ iff i^{th} cell of h^{th} tape contains symbol j at k^{th} step of computation
- Same for head position, state etc.
- $\bullet\,$ Combine into one formula $\phi_a,$ similar to the proof of the Cook-Levin theorem

Given input a, we can express run of \mathcal{M} on a as a boolean formula, without verifying oracle uses:

- Introduce variables like $T_{h,i,j,k} True$ iff i^{th} cell of h^{th} tape contains symbol j at k^{th} step of computation
- Same for head position, state etc.
- \bullet Combine into one formula $\phi_a,$ similar to the proof of the Cook-Levin theorem
- The meaning behind ϕ_a is as follows:

If ϕ_a is satisfied by some assignment V, then V encodes a path from initial configuration of \mathcal{M} on input a, to an accepting configuration, without checking that oracle returned correct data.

Oracle conditions

To verify oracle uses, we add conditions $C_{a,1}, C_{a,2}...$, where $C_{a,k}$ stands for:

If in k^{th} step an oracle is called on some input w, then in the $k + 1^{th}$ step, \mathcal{M} contains the result of running oracle on w.

Oracle conditions can be combined into a single condition C_a .

Theorem

 ϕ_a and \mathcal{C}_a can be simultaneously satisfied iff \mathcal{M} accepts a.

Oracle conditions

To verify oracle uses, we add conditions $C_{a,1}, C_{a,2}...$, where $C_{a,k}$ stands for:

If in k^{th} step an oracle is called on some input w, then in the $k + 1^{th}$ step, \mathcal{M} contains the result of running oracle on w.

Oracle conditions can be combined into a single condition C_a .

Theorem

 ϕ_a and \mathcal{C}_a can be simultaneously satisfied iff \mathcal{M} accepts a.

Oracle conditions

To verify oracle uses, we add conditions $C_{a,1}, C_{a,2}...$, where $C_{a,k}$ stands for:

If in k^{th} step an oracle is called on some input w, then in the $k + 1^{th}$ step, \mathcal{M} contains the result of running oracle on w.

Oracle conditions can be combined into a single condition C_a .

Theorem

 ϕ_a and C_a can be simultaneously satisfied iff \mathcal{M} accepts a.

Informal description

ϕ_a under valuation V means:

Does the run of \mathcal{M} on a given by V result in an accepting configuration, ignoring the oracle?

\mathcal{C}_a under valuation V means:

In run given by V, M asked for $\#SAT(\psi), \#SAT(\rho), \ldots$ and oracle returned ans. On its tapes, M wrote number num. Does ans = num?

Informal description

 ϕ_a under valuation V means:

Does the run of \mathcal{M} on a given by V result in an accepting configuration, ignoring the oracle?

 \mathcal{C}_a under valuation V means:

In run given by V, \mathcal{M} asked for $\#SAT(\psi), \#SAT(\rho), \ldots$ and oracle returned ans. On its tapes, \mathcal{M} wrote number num. Does ans = num?

• Given ϕ_a and C_a we construct State Equality instance, i.e. two diagrams D_1 and D_2 .

• We already know how two encode ϕ_a .

• To encode C_a we construct to gadgets.

- Given ϕ_a and C_a we construct State Equality instance, i.e. two diagrams D_1 and D_2 .
- We already know how two encode ϕ_a .
- To encode C_a we construct to gadgets.

- Given ϕ_a and C_a we construct State Equality instance, i.e. two diagrams D_1 and D_2 .
- We already know how two encode ϕ_a .
- To encode C_a we construct to gadgets.

For |V
angle from computational basis:

$$\llbracket M_{\phi_a} \rrbracket | V \rangle = \begin{cases} |1\rangle, & \phi_a \text{ is satisfied under } V \\ |0\rangle, & \text{otherwise} \end{cases}$$

Oracle answers

For $|V\rangle$ from computational basis:

$$\llbracket \text{Gadget for } ans \rrbracket |V\rangle = \left(2^P - ans\right) |0\rangle + ans |1\rangle$$

where ans is a concatenation of answers to the oracle queries.

Numbers written as oracle answers

For $|V\rangle$ from computational basis:

$$[\text{Gadget for } num] |V\rangle = (2^P - num) |0\rangle + num |1\rangle$$

where num is a concatenation of numbers written as oracle answers.

Final constructions

Related problem

Matrix Entry

Input: A phase-free ZH diagram D with n dangling edges and a number $l \in \mathbb{Z}[\frac{1}{2}]$.

Output: *True* if matrix interpretation of *D* contains an entry equal to *l*, and *False* otherwise.

Summary and further work

• Connections of ZH and computational complexity

- Circuit Extraction is #P-hard
- State Equality and Matrix Entry are NP^{#P}-complete
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

Summary and further work

- Connections of ZH and computational complexity
- Circuit Extraction is #P-hard
- State Equality and Matrix Entry are $NP^{\#P}$ -complete
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

Summary and further work

- Connections of ZH and computational complexity
- Circuit Extraction is #P-hard
- \bullet State Equality and Matrix Entry are $\mathrm{NP}^{\#\mathrm{P}}\text{-}\mathsf{complete}$
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

- Connections of ZH and computational complexity
- Circuit Extraction is #P-hard
- \bullet State Equality and Matrix Entry are $\mathrm{NP}^{\#\mathrm{P}}\text{-}\mathsf{complete}$
- Can we improve circuit extraction bounds?
- Does the Turing Machine approach work for other problems?

Thank you!