
Global CNOT Synthesis with Holes

Ewan Murphy and Aleks Kissinger

Quantum Physics and Logic (QPL) Conference

2023



Limitations of NISQ Computers
Connectivity Constraints

Circuit

|x0⟩
|x1⟩
|x2⟩
|x3⟩

⊕

⊕

⊕

|x0 ⊕ x3⟩
|x0 ⊕ x1 ⊕ x2 ⊕ x3⟩
|x2 ⊕ x3⟩
|x3⟩

⊕
⊕

⊕

Constraint Topology

0 1

2 3



Limitations of NISQ Computers
Connectivity Constraints

Circuit

|x0⟩
|x1⟩
|x2⟩
|x3⟩

⊕

⊕

⊕

|x0 ⊕ x3⟩
|x0 ⊕ x1 ⊕ x2 ⊕ x3⟩
|x2 ⊕ x3⟩
|x3⟩

⊕
⊕

⊕

Constraint Topology

0

3

1

2



Circuit Synthesis

Compilation method to overcome NISQ computers shortcommings

Usually works for circuits made from a specific gate set

Generates improved circuit, e.g with fewer gates or respecting connectivity
constraints, from an efficent representation of the original circuit



Unitary Decomposition
Gate Sets

CNOT (S) + 1-qubit Gates (N)

+Phase Polynomial (S) Hadamard (N)

+Clifford (S) T (N)



Unitary Decomposition
Slicing

Unitary Circuit
Decompose circuit

S N S N



Unitary Decomposition
Slicing

⊕
⊕ ⊕

⊕

⊕
V

U

(a) General Circuit

⊕
⊕ ⊕

⊕

⊕
V

U

(b) Näıve slicing

⊕
⊕ ⊕

⊕

⊕
V

U

(c) Alternative slicing



Unitary Decomposition
Quantum Combs

Unitary Circuit
Decompose circuit

S
N

N
N

N
N

N

The problem now becomes how to synthesise a quantum comb



CNOT Synthesis

CNOT (S) 1-qubit Gates (N)

Quantum Comb Hole Plugs



CNOT Combs

Logical Qubits

⊕

⊕

⊕U

V

⊕

⊕

⊕

W ⊕⊕

⊕ H

⊕0

1

2

3

0

1

2

3

⊕

⊕

⊕

⊕



CNOT Combs

Temporal Qubits

⊕

⊕

⊕ ⊕

⊕

⊕

⊕⊕

⊕

⊕0

1

2

3

1 4

2 6

4 5 5

7

3

0

6 7 ⊕

⊕

⊕

⊕

H = {(1, 4), (2, 6), (6, 7), (4, 5)}
p :: {(1, 4) 7→ V , (4, 5) 7→ H , (2, 6) 7→ U , (6, 7) 7→ W }



CNOT Combs

⊕

⊕

⊕ ⊕

⊕

⊕

⊕⊕

⊕

⊕0

1

2

3

1

4

2

6

4

5 5

7

3

0

6

7 ⊕

⊕

⊕

⊕



RowCol - Synthesis Algorithm for CNOT Circuits
Circuit Representation

Identity Gate

|x⟩
|y⟩

|x⟩
|y⟩

Identity Parity Matrix(x y
x ′ 1 0
y ′ 0 1

)
CNOT Gate

|x⟩
|y⟩ ⊕

|x⟩
|x ⊕ y⟩

CNOT Parity Matrix(x y
x ′ 1 0
y ′ 1 1

)
CNOT(c , t) corresponds to R(c , t)



RowCol - Synthesis Algorithm for CNOT Circuits
Circuit Representation

CNOT Circuit

|x0⟩
|x1⟩
|x2⟩
|x3⟩

⊕

⊕

⊕

|x0 ⊕ x3⟩
|x0 ⊕ x1 ⊕ x2 ⊕ x3⟩
|x2 ⊕ x3⟩
|x3⟩

⊕
⊕

⊕

Circuit Parity Matrix


x0 x1 x2 x3

x ′0 1 0 0 1
x ′1 1 1 1 1
x ′2 0 0 1 1
x ′3 0 0 0 1


CNOT(c , t) corresponds to R(c , t)



RowCol - Synthesis Algorithm for CNOT Circuits
Algorithm

RowCol reduces a parity matrix to the identity by eliminating the row and
column for each qubit.

RowCol can synthesise to constrained architecures:

- Qubit being eliminated has to correspond to non-cutting vertex.
- This is done using Steiner trees.



RowCol - Synthesis Algorithm for CNOT Circuits
Synthesis

Eliminate Row 1 and Column 1:
1 0 0 1
1 1 1 1
0 0 1 1
0 0 0 1

 R1 :=R0+R1


1 0 0 1
0 1 1 0
0 0 1 1
0 0 0 1

 R0 :=R3+R0


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1





RowCol - Synthesis Algorithm for CNOT Circuits
Synthesis

Eliminate Column 2:
1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 R1 :=R2+R1


1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

 R1 :=R3+R1


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1





RowCol - Synthesis Algorithm for CNOT Circuits
Synthesis

Eliminate Column 3:
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 R2 :=R3+R2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


We have reached the identity matrix meaning our synthesis process is over.



RowCol - Synthesis Algorithm for CNOT Circuits
Synthesis

Row Operations: R(0, 1), R(3, 0), R(2, 1), R(3, 1), R(3, 2).

New Circuit

Old Circuit

|x0⟩
|x1⟩
|x2⟩
|x3⟩

⊕
⊕ ⊕

⊕
⊕

|x0 ⊕ x3⟩
|x0 ⊕ x1 ⊕ x2 ⊕ x3⟩
|x2 ⊕ x3⟩
|x3⟩

|x0⟩
|x1⟩
|x2⟩
|x3⟩

⊕

⊕

⊕

|x0 ⊕ x3⟩
|x0 ⊕ x1 ⊕ x2 ⊕ x3⟩
|x2 ⊕ x3⟩
|x3⟩

⊕
⊕

⊕



CombSynth - Synthesis Algorithm for CNOT combs

⊕

⊕

⊕ ⊕

⊕

⊕

⊕⊕

⊕

⊕0

1

2

3

1

4

2

6

4

5 5

7

3

0

6

7 ⊕

⊕

⊕

⊕



CombSynth - Synthesis Algorithm for CNOT combs



0 1 2 3 4 5 6 7
0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 1 1 0 1 0 0 0 0
4 1 1 0 0 1 0 1 0
5 0 0 0 0 0 1 0 0
6 1 1 0 1 0 0 1 0
7 1 1 0 1 1 0 1 1



H = {(1, 4), (2, 6), (6, 7), (4, 5)}

t(0) = 0, t(1) = 5, t(2) = 7, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs



0 1 2 3 4 5 6 7
0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 1 1 0 1 0 0 0 0
4 1 1 0 0 1 0 1 0
5 0 0 0 0 0 1 0 0
6 1 1 0 1 0 0 1 0
7 1 1 0 1 1 0 1 1


Generate sub-matrix


0 1 2 3 4 5 6 7

0 0 0 0 1 1 0 1 1
5 0 0 0 0 0 1 0 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0



A temporal qubit can be extracted if its row and column in the full parity matrix
can be eliminated by only row operations on the submatrix.



CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 0 0 0 1 1 0 1 1
5 0 0 0 0 0 1 0 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 0 0 0 1 1 0 1 1
5 0 0 0 0 0 1 0 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0

 N/A

H = {(1, 4), (2, 6), (6, 7), (4, 5)}

t(0) = 0, t(1) = 5, t(2) = 7, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 0 0 0 1 1 0 1 1
4 1 1 0 0 1 0 1 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 1 0
7 0 0 0 0 0 0 0 1
3 1 1 0 1 0 0 0 0

 R(7, 0),R(3, 7),
R(4, 7),R(0, 7)

H = {(1, 4), (2, 6), (6, 7)}

t(0) = 0, t(1) = 4, t(2) = 7, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 1 0
6 1 1 0 1 0 0 1 0
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 0 0 0 1 1 0 0 0
6 0 0 0 0 0 0 1 0
3 1 1 0 1 0 0 0 0

 R(6, 4),R(3, 6)

H = {(1, 4), (2, 6)}

t(0) = 0, t(1) = 4, t(2) = 6, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
4 0 0 0 1 1 0 0 0
2 1 0 1 0 0 0 0 0
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(3, 4),R(0, 3)

H = {(1, 4)}

t(0) = 0, t(1) = 2, t(2) = 7, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(0, 4)

H = {(1, 4)}

t(0) = 0, t(1) = 4, t(2) = 2, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(0, 2),R(1, 0)

H = {}

t(0) = 0, t(1) = 1, t(2) = 2, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(1, 2)

H = {}

t(0) = 0, t(1) = 1, t(2) = 2, t(3) = 3



CombSynth - Synthesis Algorithm for CNOT combs

Row Operations: R(7, 0),R(3, 7),R(4, 7),R(0, 7),R(6, 4),R(3, 6),R(3, 4),R(0, 3),
R(0, 4),R(0, 2),R(1, 0),R(1, 2)

Holes: H = {(1, 4), (2, 6), (6, 7), (4, 5)}

Plugs: p :: {(1, 4) 7→ V , (4, 5) 7→ H , (2, 6) 7→ U , (6, 7) 7→ W }



CombSynth - Synthesis Algorithm for CNOT combs

0

1

2

3

1

2

3

0⊕

⊕⊕⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

V

U W

H



Computational Experiments
Slicing

⊕
⊕ ⊕

⊕

⊕
V

U

(a) General Circuit

⊕
⊕ ⊕

⊕

⊕
V

U

(b) Näıve slicing

⊕
⊕ ⊕

⊕

⊕
V

U

(c) Alternative slicing



Computational Experiments
Experimental Parameters

Architectures

9q-square

16-square

regetti 16q aspen

bm qx5

ibm q20 tokyo

CNOT Count

4

8

16

32

64

128

256

512

1024

Non-CNOT Proportion

5%

15%

25%

50%



Computational Experiments
Graph Selection



Computational Experiments
Results

Comb Slice
9q-square -43.1% 80.79%
16q-square 13.11% 344.5%
regetti

16q aspen
47.31% 555.4%

bm qx5 32.27% 461.9%
ibm q20 tokyo 33.17% 393.1%

Architectures
5%

Non-CNOT Gates



Computational Experiments
Results

Comb Slice
9q-square 34.12% 208.7%
16q-square 154.4% 511.1%
regetti

16q aspen
231.2% 893.1%

bm qx5 197.2% 698.8%
ibm q20 tokyo 183.6% 481.0%

Architectures
15%

Non-CNOT Gates



Computational Experiments
Results

Comb Slice
9q-square 91.93% 255.9%
16q-square 263.9% 564.6%
regetti

16q aspen
379.6% 1027%

bm qx5 322.4% 783.6%
ibm q20 tokyo 289.3% 500.2%

Architectures
25%

Non-CNOT Gates



Computational Experiments
Results

Comb Slice
9q-square 182.1% 306.8%
16q-square 437.0% 606.9%
regetti

16q aspen
614.9% 1119%

bm qx5 527.8% 837.7%
ibm q20 tokyo 440.7% 498.2%

Architectures
50%

Non-CNOT Gates



Summary and Conclusion

Proposed using quantum combs as an alternative to slicing for generalising
circuit synthesis

Introduced CombSynth, a synthesis algorithm for CNOT combs based on
RowCol

Tested CombSynth against RowCol with slicing and found it performed
better on a wide variety of experimental parameters.



Future Work
Other Gate Sets

+Phase Polynomial (S) Hadamard (N)

+Clifford (S) T (N)



Future Work
Compare with literature

Investigate how synthesis with quantum combs relates to compilation methods
that don’t use slicing:

ZX Circuit Extraction : Duncan, Kissinger, Perdrix and van de Wetering
2019

Lazy Synthesis : Martiel and Goubault de Brugière 2020


