Global CNOT Synthesis with Holes

Ewan Murphy and Aleks Kissinger

Quantum Physics and Logic (QPL) Conference

Limitations of NISQ Computers

Circuit

Constraint Topology

Limitations of NISQ Computers

Circuit

Constraint Topology

Circuit Synthesis

- Compilation method to overcome NISQ computers shortcommings
- Usually works for circuits made from a specific gate set
- Generates improved circuit, e.g with fewer gates or respecting connectivity constraints, from an efficent representation of the original circuit

Unitary Decomposition

Unitary Decomposition

Slicing

Unitary Decomposition

Slicing

Unitary Decomposition

Quantum Combs

The problem now becomes how to synthesise a quantum comb

CNOT Synthesis

CNOT Combs

Logical Qubits

CNOT Combs

Temporal Qubits

$\mathcal{H}=\{(1,4),(2,6),(6,7),(4,5)\}$
$p::\{(1,4) \mapsto V,(4,5) \mapsto H,(2,6) \mapsto U,(6,7) \mapsto W\}$

CNOT Combs

RowCol - Synthesis Algorithm for CNOT Circuits

Circuit Representation

$$
\begin{aligned}
& \text { Identity Gate } \\
& |x\rangle-|x\rangle \\
& |y\rangle-|y\rangle \\
& \text { CNOT Gate } \\
& |x\rangle=|x\rangle \\
& |y\rangle-|x \oplus y\rangle
\end{aligned}
$$

$\operatorname{CNOT}(c, t)$ corresponds to $\mathrm{R}(c, t)$
Identity Parity Matrix
x
x^{\prime}
y^{\prime}
1 0

RowCol - Synthesis Algorithm for CNOT Circuits

Circuit Representation

CNOT Circuit

CNOT (c, t) corresponds to $\mathrm{R}(c, t)$

Circuit Parity Matrix
x_{0}^{\prime}
x_{0}^{\prime}
x_{1}
x_{1}^{\prime}
x_{2}^{\prime}
x_{2}^{\prime}
$x_{3}^{\prime}$$\left(\begin{array}{cccc}x_{3} \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$

RowCol - Synthesis Algorithm for CNOT Circuits

Algorithm

- RowCol reduces a parity matrix to the identity by eliminating the row and column for each qubit.
- RowCol can synthesise to constrained architecures:
- Qubit being eliminated has to correspond to non-cutting vertex.
- This is done using Steiner trees.

RowCol - Synthesis Algorithm for CNOT Circuits

Eliminate Row 1 and Column 1:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1}:=R_{0}+R_{1}}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{0}:=R_{3}+R_{0}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

RowCol - Synthesis Algorithm for CNOT Circuits

Eliminate Column 2:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1}:=R_{2}+R_{1}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1}:=R_{3}+R_{1}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

RowCol - Synthesis Algorithm for CNOT Circuits

Synthesis

Eliminate Column 3:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}:=R_{3}+R_{2}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We have reached the identity matrix meaning our synthesis process is over.

RowCol - Synthesis Algorithm for CNOT Circuits

Row Operations: $R(0,1), R(3,0), R(2,1), R(3,1), R(3,2)$.

New Circuit

Old Circuit

CombSynth - Synthesis Algorithm for CNOT combs

CombSynth - Synthesis Algorithm for CNOT combs

$\left.\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 6 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}\right) \quad \mathcal{H}=\{(1,4),(2,6),(6,7),(4,5)\}$

CombSynth - Synthesis Algorithm for CNOT combs

0
0
1
2
3
4
5
6
7
7

0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1

0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0

1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0

1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1\end{array}\right) \xrightarrow{ }\)

A temporal qubit can be extracted if its row and column in the full parity matrix can be eliminated by only row operations on the submatrix.

CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix	Eliminated sub-matrix	Row operations required for reduction
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	
$0\left(\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$	$0\left(\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$	
$7\left(\begin{array}{lllllllll}1 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}\right)$	$7\left(\begin{array}{lllllllll}1 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}\right)$	N/A
$3\left(\begin{array}{llllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$	$3\left(\begin{array}{llllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$	
$\mathcal{H}=\{(1,4),(2,6),(6,7),(4,5)\}$		
$t(0)=0, t(1)=5, t(2)=7, t(3)=3$		

CombSynth - Synthesis Algorithm for CNOT combs

$$
\begin{gathered}
\mathcal{H}=\{(1,4),(2,6),(6,7)\} \\
t(0)=0, t(1)=4, t(2)=7, t(3)=3
\end{gathered}
$$

CombSynth - Synthesis Algorithm for CNOT combs

$$
\begin{gathered}
\mathcal{H}=\{(1,4),(2,6)\} \\
t(0)=0, t(1)=4, t(2)=6, t(3)=3
\end{gathered}
$$

CombSynth - Synthesis Algorithm for CNOT combs

$$
\begin{gathered}
\mathcal{H}=\{(1,4)\} \\
t(0)=0, t(1)=2, t(2)=7, t(3)=3
\end{gathered}
$$

CombSynth - Synthesis Algorithm for CNOT combs

$$
\begin{gathered}
\mathcal{H}=\{(1,4)\} \\
t(0)=0, t(1)=4, t(2)=2, t(3)=3
\end{gathered}
$$

CombSynth - Synthesis Algorithm for CNOT combs

Initial sub-matrix									Eliminated sub-matrix											Row operations required for reduction
0	0	2	3	4	5	6	7			0	1	2	3	4	5	6			$R(0,2), R(1,0)$	
0 (1	1	0	0	0	0	0				1	0	0	0	0	0	0				
10	0	0	0	0	0	0	0			0		0	0	0	0	0				
21	1	1	0	0	0	0	0			0	1	1	0	0	0	0				
		0				0						0								

$$
\begin{gathered}
\mathcal{H}=\{ \} \\
t(0)=0, t(1)=1, t(2)=2, t(3)=3
\end{gathered}
$$

CombSynth - Synthesis Algorithm for CNOT combs

$$
\begin{gathered}
\mathcal{H}=\{ \} \\
t(0)=0, t(1)=1, t(2)=2, t(3)=3
\end{gathered}
$$

CombSynth - Synthesis Algorithm for CNOT combs

Row Operations: $R(7,0), R(3,7), R(4,7), R(0,7), R(6,4), R(3,6), R(3,4), R(0,3)$, $R(0,4), R(0,2), R(1,0), R(1,2)$

Holes: $\mathcal{H}=\{(1,4),(2,6),(6,7),(4,5)\}$
Plugs: $p::\{(1,4) \mapsto V,(4,5) \mapsto H,(2,6) \mapsto U,(6,7) \mapsto W\}$

CombSynth - Synthesis Algorithm for CNOT combs

Computational Experiments

Slicing

Computational Experiments

Experimental Parameters

Architectures
■ 9q-square
- 16-square
■ regetti_16q_aspen
- bm_qx5
■ ibm_q20_tokyo
CNOT Count
- 4
- 8
- 16
- 32
- 64
- 128
- 256
- 512
- 1024

Non-CNOT Proportion

- 5%
- 15%
- 25%
- 50%

Computational Experiments

Graph Selection

Computational Experiments

Results

Architectures	5%	
	Non-CNOT Gates	
	Comb	Slice
9q-square	-43.1%	80.79%
16q-square	13.11%	344.5%
regetti_ 16q_aspen	47.31%	555.4%
bm_qx5	32.27%	461.9%
ibm_q20_tokyo	33.17%	393.1%

Computational Experiments

Results

Architectures	15%	
	Non-CNOT Gates	
	Comb	Slice
9q-square	34.12%	208.7%
16q-square	154.4%	511.1%
regetti_ $16 q _a s p e n ~$	231.2%	893.1%
bm_q×5	197.2%	698.8%
ibm_q20_tokyo	183.6%	481.0%

Computational Experiments

Results

Architectures	25%	
	Non-CNOT Gates	
	Comb	Slice
9q-square	91.93%	255.9%
16q-square	263.9%	564.6%
regetti_ $16 q _a s p e n ~$	379.6%	1027%
bm_qx5	322.4%	783.6%
ibm_q20_tokyo	289.3%	500.2%

Computational Experiments

Results

Architectures	50%	
	Non-CNOT Gates	
	Comb	Slice
9q-square	182.1%	306.8%
16q-square	437.0%	606.9%
regetti_ 16q_aspen	614.9%	1119%
bm_qx5	527.8%	837.7%
ibm_q20_tokyo	440.7%	498.2%

Summary and Conclusion

- Proposed using quantum combs as an alternative to slicing for generalising circuit synthesis
- Introduced CombSynth, a synthesis algorithm for CNOT combs based on RowCol
- Tested CombSynth against RowCol with slicing and found it performed better on a wide variety of experimental parameters.

Future Work

Other Gate Sets

Future Work

Investigate how synthesis with quantum combs relates to compilation methods that don't use slicing:

- ZX Circuit Extraction: Duncan, Kissinger, Perdrix and van de Wetering 2019
- Lazy Synthesis: Martiel and Goubault de Brugière 2020

