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Motivation

Recent work : Compositionality of planar perfect matchings.
We introduced the planar fragment of ZW-calculus
(pW-calculus) and showed it is universal and complete for
matchgates.

pWH-scalars correspond to the number of perfect matchings of
graphs.

FKT algorithm : efficiently simulable fragment (like Clifford
fragment for the ZX-calculus)

In this talk : alternative diagrammatical polynomial
algorithm counting perfect matchings in planar graphs using
pW-calculus
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Perfect matchings

Definition

Let G = (V, E) be a graph.

We say that P C E is a perfect matching when every vertex is
covered by exactly one edge in P.
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Example
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Counting perfect matching

® In general, #P-Complete [Valiant, '79].
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Counting perfect matching

® In general, #P-Complete [Valiant, '79].
¢ Polynomial for planar graphs [Fisher-Kasteleyn-Temperley, '67]
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FKT algorithm example

#PM = Pf(M) = \/det(M) = 4
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/W-calculus

® Bob Coecke and Aleks Kissinger : The compositional
structure of multipartite quantum entanglement.

® Amar Hadzihasanovic : A diagrammatic axiomatisation for
qubit entanglement.

® |nteresting connections with fermionic quantum computing,
and recent works importing some ZW-calculus primitives into
ZX-calculus
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Planar W-calculus
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Planar W-calculus
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Correspondence

The interpretation of the pW-scalar associated to a graph is its
number of perfect matchings.

Example
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Vertex by vertex Decomposition
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Summary

O A diagrammatical algorithm
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Embedding

® Problem : unclear where one should apply the rewriting rules,
why it would terminate, how to implement it.

® Solution : Let's embed the diagram associated to our graph
on a semi-circle.

e Advantage : One can consider the nodes ordered from left to
right, use this order to know on which edge to apply the
rewriting strategy, and deduce whether or not two wires
intersect each other via a fermionic swap from the order on
their vertices.
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Embedding a diagram
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® Question : How to embed our diagram in practice ?
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® Question : How to embed our diagram in practice ?

® Solution : We don't need to do it graphically, and can use a
Pfaffian orientation to put —1 weights on the right edges.
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Proposition

Proposition
The interpretation of a diagram associated to a graph embedded
on a semi-circle is the Pfaffian of its adjacency matrix.
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Pfaffian

Definition
Let M € C2nx2n,

Pf(M) := > e(m) [ [ Mr2i-1y.m2)
€Sy, . t.Vi i=1
w(2i—-1)<7(2i)
m(2i—1)<m(2i+1)
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Sketch of proof

n

Pf(M) = Z e(m) H Mz (2i-1),x(2i)
w€Soys.t.Vi i=1
m(2i—1)<m(2i)
m(2i—1)<m(2i41)

1 6
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Sketch of proof
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Sketch of proof
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Sketch of proof
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Algorithm

® Find a Pfaffian orientation
® Embed the diagram using this orientation

© While there is more than 2 black spiders, apply the rewriting
strategy on edge (/,/), i being minimal and j maximal
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A new algorithm 7

® \We have a new graphical algorithm for computing the
Pfaffian,

® But still use FKT algorithm to get a Pfaffian orientation and
embed our diagram.

® Gives a graphical interpretation of the role of the Pfaffian
oriantation.
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Further work

® Adapt the algorithm to compute scalars in the fermionic
ZW-calculus (pW + swap gate) which is universal for Qubits
modulo an encoding trick.
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Further work

® Adapt the algorithm to compute scalars in the fermionic
ZW-calculus (pW + swap gate) which is universal for Qubits
modulo an encoding trick.

® Extend the polynomial algorithm to all graphs for which
counting perfect matchings is polynomial.

® Explore the link between Pfaffian orientations and planar
embeddings of a graph.
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The end

Thank you for your attention

33/33



	Summary
	Perfect Matchings
	ZW-calculus, pW-calculus
	Rewriting strategy
	A diagrammatical algorithm
	Further work

