

Contextuality with vanishing coherence and maximal robustness to dephasing

<u>Vinicius P. Rossi</u>, David Schmid, John H. Selby, Ana Belén Sainz

International Centre for Theory of Quantum Technologies, University of Gdańsk

arXiv:2212.06856

July 20th, 2023

Outline

- 1 Preliminary concepts
- 2 Tools
- 3 Results
- 4 Conclusions

Motivation

Motivation

Motivation

Definitions

Preliminary concepts Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

- remmary concepts
 - \blacksquare Operational prepare and measure scenario: a tuple $(\mathcal{P},\mathcal{M},p)$, where
 - $ightharpoonup \mathcal{P} = \text{possible preparations};$
 - \mathcal{M} = possible measurement outcomes for each measurement;
 - p = a rule on how to compute probabilities for each measurement outcome conditioned to each preparation, $\{p(k|M,P)\}_{P \in \mathcal{P}, [k|M] \in \mathcal{M}}$;
 - **Equivalence classes:** a subset $e(P) \subset \mathcal{P}$ such that it can be defined as

$$e(P) := \{ P' \in \mathcal{P} | p(k|M, P') = p(k|M, P), \quad \forall [k|M] \in \mathcal{M} \},$$

$$\tag{1}$$

with a similar definition for measurement equivalence classes.

 $^{^1\}mathrm{I'm}$ assuming tomographic completeness.

Definitions

Preliminary concepts Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

- Ontological model associated to $(\mathcal{P}, \mathcal{M}, p)$: a tuple $(\Lambda, \{\mu(\lambda|P)\}_{\lambda \in \Lambda, P \in \mathcal{P}}, \{\xi(k|M,\lambda)\}_{\lambda \in \Lambda, [k|M] \in \mathcal{M}})$, where
 - lacksquare Λ is a measurable space;
 - \blacksquare $\mu(\lambda|P)$ and $\xi(k|M,\lambda)$ are conditional probability distributions;
 - $p(k|M,P) = \int_{\lambda \in \Lambda} \xi(k|M,\lambda)\mu(\lambda|P)d\lambda$, for all $[k|M] \in \mathcal{M}$, $P \in \mathcal{P}$.
- Generalised non-contextuality: The assumption that for all $\lambda \in \Lambda$
 - $\mu(\lambda|P) = \mu(\lambda|e(P)), \forall P \in \mathcal{P};$
 - $\xi(k|M,\lambda) = \xi(e(k|M),\lambda), \, \forall [k|M] \in \mathcal{M}.$

Definitions

Preliminary concepts Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

- GPT associated to an operational scenario: A tuple (V, Ω, \mathcal{E}) where
 - lue V is a finite real inner product space;
 - $\Omega \in V$ is a convex set such that each $e(P) \in \mathcal{P}$ is mapped to a vector $s \in \Omega$;
 - $\mathcal{E} \subseteq \Omega^*$ is a convex set such that each $e(k|M) \in \mathcal{M}$ is mapped to a vector $e \in \mathcal{E}$;
 - $p(k|M,P) = \langle e, s \rangle.$
- Strictly classical scenarios: A scenario is strictly classical when its associated GPT is simplicial, i.e., $\Omega = \Delta_d$ a d-dimensional simplex and $\mathcal{E} = \Delta_d^*$, its dual hypercube.

Simplex embedding

Preliminary concepts

Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

Simplex embeddable scenarios

A GPT (V, Ω, \mathcal{E}) simplex embeddable if there is a simplex $\Delta_d \subset \mathbb{R}^n$, and linear maps $\iota : \Omega \to \Delta_d$, $\kappa : \mathcal{E} \to \Delta_d^*$ such that

- $\bullet \iota(\Omega) \subseteq \Delta_d;$
- $\kappa(\mathcal{E}) \subseteq \Delta_d^*;$
- Inner products are preserved by these maps.

If this GPT is associated to an operational scenario, then the scenario admits of a noncontextual ontological model.²

²PRX Quantum 2, 010331

Preliminary concepts

Quantum Physics and Logic 2023 - Institute Henri Poincaré, Paris

Incoherent states/effects cannot proof contextuality.

Proof.
$$\mathcal{P} = \{ \rho_P = \sum_{i=1}^d q_i^P |i\rangle\langle i| \}_{P \in \mathcal{P}}, \ \mathcal{M} = \{ E_{k|M} \}_{[k|M] \in \mathcal{M}}.$$
 Define

$$\mu(i|P) := \langle i|\rho_P|i\rangle \,, \quad \xi(k|M,i) := \text{Tr}\{E_{k|M}|i\rangle\langle i|\}. \tag{2}$$

$$\operatorname{Tr}\{E_{k|M}\rho_P\} = \sum_{i \in I} \langle i|E_{k|M}\rho_P|i\rangle$$
 (3)

$$= \sum_{i \in I} \langle i | E_{k|M} | i \rangle \langle i | \rho_P | i \rangle$$

$$= \sum_{i \in I} \xi_{k|M} (i) \mu_P (i),$$
(4)

$$= \sum_{i \in I} \xi_{k|M}(i)\mu_P(i), \tag{5}$$

which is a noncontextual model by the definitions of $\mu(i|P)$ and $\xi(k|M,i)$.

Preliminary concepts

Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

Any quantum scenario admits of a simplex embedding under finite partial depolarising noise. 3

$$\mathcal{D}_{\text{depol}}[\rho] = (1 - r)\rho + \frac{r}{2}\mathbb{1}.$$
(6)

 $^{^3}$ Phys. Rev. X 8, 011015; Phys. Rev. Lett. 115, 110403; apXiv:2003.05984.

Preliminary concepts Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

Since coherence is necessary for contextuality proofs and a finite amount of partial depolarising noise is enough to destroy proofs of contextuality, what happens when we take dephasing into consideration?

$$\mathcal{D}_{\text{deph}}[\rho] = (1 - r)\rho + r \sum_{i=0}^{1} |i\rangle\langle i|\rho|i\rangle\langle i|.$$
 (7)

Selby, Wolfe, Schmid, Sainz, arXiv:2204.11905 (2022)

- I Asks for a set of states Ω , a set of effects \mathcal{E} , a unit effect I and a maximally mixed state μ ;
- 2 Finds the minimal real vector space V in which both Ω and \mathcal{E} can live and computes their cone facets H_{Ω} , $H_{\mathcal{E}}$ and the inclusion matrices I_{Ω} and $I_{\mathcal{E}}$ onto this vector space;
- 3 Solves the linear program

min
$$r$$

s.t. $rI_{\mathcal{E}}^T \cdot \mathcal{D} \cdot I_{\Omega} + (1-r)I_{\mathcal{E}}^T \cdot I_{\Omega} = H_{\mathcal{E}}^T \cdot \sigma \cdot H_{\Omega}, (8)$
 $\sigma \geq_e 0$.

Tools Quantum Physics an

Here θ is proportional to most quantifiers for coherence (e.g. trace distance $C(\theta) = \sin \theta$)

Schmid & Spekkens, Phys. Rev. X 8, 011015

Depolarising noise

Results

r>0 for all $0<\theta<\frac{\pi}{2}$ for the embedding to exist \implies proof of contextuality for any amount of coherence.

Dephasing noise

Results

Dephasing noise

Results

Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

Smaller the coherence, higher the robustness. Can we make it maximally robust?

Maximal robustness to dephasing for vanishing coherence \implies There are scenarios that will not admit of a simplex embedding by any amount of partial dephasing noise.

Clear cut between θ and p on when a proof of contextuality exists or not. If the coherence quantifier is the trace distance $C(\theta) = \sin \theta$, then

$$C(\theta) \ge \sqrt{p(2-p)}. (9)$$

Final message

Conclusions

- **Summary:** Any scenario will admit of a simplex embedding after partial depolarisation, but we show that the same is not true for dephasing. Therefore, there are proofs of contextuality maximally robust to dephasing.
- Why does it matter? dephasing is one of the most common noises in quantum computing, and finding proofs of nonclassicality maximally robust to it can yield applications;
- Future challenges: how to talk about dephasing beyond the rebit GPT? How to generalise the code for other types of noise? Is there such a maximal robustness for scenarios other than this family?

Acknowledgements

Conclusions

Quantum Physics and Logic 2023 – Institute Henri Poincaré, Paris

The 'International Centre for Theory of Quantum Technologies' project is carried out within the International Research Agendas Programme of the Foundation for Polish Science co-financed by the European Union from the funds of the Smart Growth Operational Programme, axis IV: Increasing the research potential (Measure 4.3).

