The Qudit ZH-Calculus:
 Generalised Toffoli+Hadamard and Universality ${ }^{1}$

Patrick Roy ${ }^{1}$ John van de Wetering ${ }^{3}$ Lia Yeh ${ }^{2}$
${ }^{1}$ University of Oxford
${ }^{2}$ Quantinuum, 17 Beaumont Street
Oxford OX1 2NA, United Kingdom
${ }^{3}$ University of Amsterdam

July 20, 2023

Motivation

Previous Work

■ In qubits, there are three possible graphical calculi (ZX, ZW and ZH$)^{2}$
■ ZX and ZW have proposal for generalizing to qudit, ZH does not

- Phase-free $\mathrm{ZH}-$ Calculus is equivalent to $\mathrm{Toffoli}+\mathrm{H}$ circuits ${ }^{3}$

[^0]
Motivation

Previous Work

■ In qubits, there are three possible graphical calculi (ZX, ZW and ZH$)^{2}$
■ ZX and ZW have proposal for generalizing to qudit, ZH does not

- Phase-free $\mathrm{ZH}-$ Calculus is equivalent to $\mathrm{Toffoli}+\mathrm{H}$ circuits ${ }^{3}$

This Paper

- First generalization of ZH to qudits and universality for linear maps
- A generalization of the Toffoli+H gateset to qudits and computational universality

[^1]
Overview

1 Introducing the Qudit ZH-Calculus

2 Universality for Linear Maps of Qudit ZH

3 Computational Universality and Generalized Toffoli

4 Conclusion

Overview

1 Introducing the Qudit ZH-Calculus

2 Universality for Linear Maps of Qudit ZH

3 Computational Universality and Generalized Toffoli

4 Conclusion

The H-box

We want an H -box that...
1 ...generalizes the Discrete Fourier Transform $H|k\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \omega^{i k}|i\rangle$ for $\omega=e^{2 \pi i / d}$
2 ...generalizes the qubit AND-gate construction $\frac{1}{\text { AND }}=\frac{1}{\dot{\alpha}}$
3 ...is flexsymmetric

The H-box

We want an H-box that...
1 ...generalizes the Discrete Fourier Transform

$$
H|k\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \omega^{i k}|i\rangle \text { for } \omega=e^{2 \pi i / d}
$$

2 ...generalizes the qubit AND-gate construction $\frac{1}{\operatorname{AND}}=\frac{1}{\dot{\alpha}}$
3 ...is flexsymmetric

$$
\overbrace{\underbrace{(\cdots)}_{m}}^{\overbrace{\ldots}^{n}}:=\frac{1}{\sqrt{d}} \sum_{i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{n} \in \mathbb{Z}_{d}} \omega^{i_{1} \ldots \cdot i_{m} \cdot j_{1} \ldots \cdot j_{n}}\left|j_{1} \ldots j_{n}\right\rangle\left\langle i_{1} \ldots i_{m}\right|
$$

The Generators $1 / 2$

H-Box

Can replace ω with some r to get the " r-labelled" H-box $H(r)$.

Z-Spider

$$
\underbrace{\overbrace{0}^{n}}_{\substack{(\cdots)}}:=\sum_{i=0}^{d-1}|i\rangle^{\otimes n}\left\langle\left. i\right|^{\otimes m}\right.
$$

The Generators 2/2

\sqrt{d} and $1 / \sqrt{d}$

$$
\text { ^ }:=0 \quad \text { : } \quad \begin{gathered}
\circ \\
0
\end{gathered}
$$

X-Spider

Pauli-X

Qudit Pauli-X: $|i\rangle \mapsto\left|i+{ }_{d} 1\right\rangle$

An appeal to arithmetic modulo d

Spider Math

Generalizes qubit relationship of H-box and AND-gate - AND is multiplication modulo 2!

The Rules $1 / 2$

Z-Fusion (zs)

The Rules $1 / 2$

Z-Fusion (zs)

Z/X-Bialgebra (ba1)

The Rules $1 / 2$

Z-Fusion (zs)

Z/X-Bialgebra (ba1)

Identity (id)

$$
\phi=1
$$

The Rules $2 / 2$

H-Contraction (hs)

The Rules $2 / 2$

Z/H-Bialgebra (ba2)

The Rules $2 / 2$

Z/H-Bialgebra (ba2)

Cyclic (c)

Bonus Rule

Ortho (o)

$\mathbf{\Delta}^{d-1}$

$$
\begin{gathered}
\forall x_{0}, \ldots, x_{d-1}, y: x_{0} y=\ldots=x_{d-1}(y+d-1) \\
\Longleftrightarrow \\
\forall i \in\{0, \ldots, d-1\}: x_{i}(y+i)=0
\end{gathered}
$$

Because $\{y, y+1, \ldots, y+d-1\}=\mathbb{Z} / d \mathbb{Z} \ni 0$

Overview

1 Introducing the Qudit ZH-Calculus

2 Universality for Linear Maps of Qudit ZH

3 Computational Universality and Generalized Toffoli

4 Conclusion

Many ways to describe linear maps

1 Mapping of basis states:

$$
|i\rangle \mapsto|i\rangle+\left|i+_{d} 1\right\rangle
$$

Computes rows of Pascal's triangle as column vectors:

$$
|0\rangle=\left(\begin{array}{c}
1 \\
0 \\
\vdots
\end{array}\right) \stackrel{R}{\rightsquigarrow}\left(\begin{array}{c}
1 \\
1 \\
0 \\
\vdots
\end{array}\right) \stackrel{R}{\rightsquigarrow}\left(\begin{array}{c}
1 \\
2 \\
1 \\
0 \\
\vdots
\end{array}\right) \stackrel{R}{\rightsquigarrow}\left(\begin{array}{c}
1 \\
3 \\
3 \\
1 \\
0 \\
\vdots
\end{array}\right) \stackrel{R}{\rightsquigarrow} \ldots
$$

Many ways to describe linear maps

1 Mapping of basis states:

$$
|i\rangle \mapsto|i\rangle+\left|i+_{d} 1\right\rangle
$$

2 Matrix:

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 1 \\
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 1 & 1
\end{array}\right)
$$

Many ways to describe linear maps

1 Mapping of basis states:

$$
|i\rangle \mapsto|i\rangle+\left|i+_{d} 1\right\rangle
$$

2 Matrix:

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 1 \\
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 1 & 1
\end{array}\right)
$$

3 Logical formula whose model are the indices of 1-entries of matrix:

$$
\varphi(x, y)=(x=y) \vee(y=x+1)
$$

Many ways to describe linear maps

1 Mapping of basis states:

$$
|i\rangle \mapsto|i\rangle+\left|i+_{d} 1\right\rangle
$$

2. Matrix:

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 1 \\
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 1 & 1
\end{array}\right)
$$

3 Logical formula whose model are the indices of 1-entries of matrix:

$$
\varphi(x, y)=(x=y) \vee(y=x+1)
$$

4 Polynomial whose roots are the indices of 1-entries of matrix:

$$
p(x, y)=(y-x) \cdot(x+1-y) \in \mathbb{Z}_{d}[X, Y]
$$

Many ways to describe linear maps

4 Polynomial whose roots are the indices of 1-entries of matrix:

$$
p(x, y)=(y-x) \cdot(x+1-y) \in \mathbb{Z}_{d}[X, Y]
$$

5 ... ZH-Diagram!

Post-select with 0 -labelled H-box and bend y-wire to get $|i\rangle \mapsto|i\rangle+\left|i+{ }_{d} 1\right\rangle$.

Universality with labeled H-boxes

Generalizes to matrices that are r, 1 -valued instead of 0,1 -valued

Universality with labeled H-boxes

Generalizes to matrices that are r, 1 -valued instead of 0,1 -valued
Can decompose any matrix as entry-wise product of such matrices, e.g.

$$
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)=\left(\begin{array}{ll}
a & 1 \\
1 & a
\end{array}\right) \star\left(\begin{array}{ll}
1 & b \\
1 & 1
\end{array}\right) \star\left(\begin{array}{ll}
1 & 1 \\
c & 1
\end{array}\right)
$$

Universality with labeled H -boxes

Generalizes to matrices that are r, 1 -valued instead of 0,1 -valued
Can decompose any matrix as entry-wise product of such matrices, e.g.

$$
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)=\left(\begin{array}{ll}
a & 1 \\
1 & a
\end{array}\right) \star\left(\begin{array}{ll}
1 & b \\
1 & 1
\end{array}\right) \star\left(\begin{array}{ll}
1 & 1 \\
c & 1
\end{array}\right)
$$

Technically, suffices to construct diagrams for matrices that only have single non-1 entry, but ideas from previous slides leads to significantly smaller diagrams

Universality for $\mathbb{Z}[\omega]$

Want universality without adjoining labelled H-boxes as new generators

Universality for $\mathbb{Z}[\omega]$

Want universality without adjoining labelled H-boxes as new generators

Idea

- We know how to construct $H(0)$:

$$
\frac{1}{0}=1
$$

■ Find diagram for map S which increments H-box label:

$$
H(n+1)=S H(n)
$$

■ Find diagram for $H(-1)$ and use $H(-1) \star H(n)=H(-n)$

Successor Map

Needs to satisfy

$$
\begin{array}{rccccccccc}
1 & = & s_{00} & + & s_{01} a & + & s_{02} a^{2} & + & \cdots & + \\
a+1 & = & s_{10} & + & s_{11} a & + & s_{12} a^{2} & + & \cdots & + \\
& \vdots & & \vdots & & \vdots & & \vdots & & s_{0(d-1)} a^{d-1} \\
(a+1)^{d-1} & = & s_{(d-1)} a^{d-1}
\end{array}
$$

Successor Map

Needs to satisfy

$$
\begin{array}{rccccccccc}
1 & = & s_{00} & + & s_{01} a & + & s_{02} a^{2} & + & \cdots & + \\
s_{10} a & s_{0(d-1)} a^{d-1} \\
a+1 & = & s_{10} & + & s_{11} a & s_{12} a^{2} & + & \cdots & + & s_{1(d-1))^{a^{d-1}}} \\
& \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
(a+1)^{d-1} & = & s_{(d-1) 0} & + & s_{(d-1) 1} a & + & s_{12} a^{2} & + & \cdots & + \\
s_{(d-1)(d-1) a^{d-1}}
\end{array}
$$

Binomial Theorem

$$
(a+1)^{j}=\sum_{i=0}^{j}\binom{j}{i} a^{i}
$$

$\Rightarrow S$ encodes Pascal's triangle, e.g. $S^{T}|c\rangle=R^{c}|0\rangle$

Multiplexer

Insight

$$
S^{T}|c\rangle=R^{c}|0\rangle
$$

$$
\Longleftrightarrow
$$

$$
S^{T} \text { is multiplexer for } R^{0}|0\rangle, \ldots, R^{d-1}|0\rangle \text { with control }|c\rangle
$$

Multiplexer

Insight

$$
\begin{aligned}
S^{T}|c\rangle & =R^{c}|0\rangle \\
& \Longleftrightarrow
\end{aligned}
$$

S^{T} is multiplexer for $R^{0}|0\rangle, \ldots, R^{d-1}|0\rangle$ with control $|c\rangle$

$$
M:\left|x_{0} \ldots x_{d-1}\right\rangle \otimes|c\rangle \mapsto \begin{cases}\left|x_{c}\right\rangle & x_{j}=0 \text { for all } j \neq c \\ 0 & \text { otherwise. }\end{cases}
$$

Successor

Successor

So far: All non-negative integers through successive application of S to $H(0)$

Negative Integers

Unlabeled H-box $=\omega$-labeled H-box

Negative Integers

Unlabeled H-box $=\omega$-labeled H-box

Elements $f \in \mathbb{Z}[\omega]$ have the form

$$
f=\sum_{i=0}^{d-1} n_{i} \omega^{i}=n_{0}+\omega\left(n_{1}+\omega\left(\ldots+\omega n_{d-1}\right) \ldots\right)
$$

for $n_{0}, \ldots, n_{d-1} \in \mathbb{Z}$

Theorem

$$
\omega+\omega^{2}+\ldots+\omega^{d-1}=-1
$$

Theorem

$$
\omega+\omega^{2}+\ldots+\omega^{d-1}=-1
$$

Final pieces:

- $H(-1)=H\left(\omega+\ldots+\omega^{d-1}\right)$
- $H(-n)=H(n) \star H(-1)$
\Rightarrow Diagrams for all matrices over $\mathbb{Z}[\omega]$

Overview

1 Introducing the Qudit ZH-Calculus

2 Universality for Linear Maps of Qudit ZH

3 Computational Universality and Generalized Toffoli

4 Conclusion

Toffolis and phase-free qubit ZH

Qubits

Toffoli +H approximately universal for quantum computation, and ZH allows simple reasoning about these gates:

Toffolis and phase-free qubit ZH

Qubits

Toffoli +H approximately universal for quantum computation, and ZH allows simple reasoning about these gates:

Question

What approximately universal gateset does phase-free qudit ZH easily allow us to reason about?

Toffoli generalizes to $|0\rangle$-controlled X

In odd qudit dimension d, the $|0\rangle$-controlled X suffices to realize all d-ary classical reversible function $f: \mathbb{Z}_{d}^{n} \rightarrow \mathbb{Z}_{d}^{n}$ (with ancillae)
\rightarrow We derive this by explicitly constructing all possible f in $\mathcal{O}\left(d^{n} n\right)$ many $|0\rangle$-controlled X gates (optimal up to log-factor)

$|0\rangle$-controlled X

Toffoli $+H$ generalizes to $|0\rangle$-controlled $X+H$

$|0\rangle$-controlled X and H are approximately universal for qudit quantum computation
\rightarrow Construct Cliffords + single-qudit non-Clifford gate to get universality

Toffoli $+H$ generalizes to $|0\rangle$-controlled $X+H$

$|0\rangle$-controlled X and H are approximately universal for qudit quantum computation
\rightarrow Construct Cliffords + single-qudit non-Clifford gate to get universality

- For $d=3$: Construct $R=\operatorname{diag}(1,1,-1)$ gate
\rightarrow Complicated construction, see paper...
■ For $d>3$: Construct $Q[0]=\operatorname{diag}(\omega, 1, \ldots, 1)$ gate

Qudit ZH is equivalent to post-selected circuits

H-Box

Is just a CCZ acting on $|+++\rangle$:

RHS is classical reversible (Toffoli-like) +H , and thus expressible via $|0\rangle$-controlled X

Qudit ZH can be translated to Qudit ZX

$|0\rangle$-controlled X

where $\vec{p}=\left(\omega^{\frac{-(d-1)}{2}}, \omega^{\frac{-(d-1)}{2}}, \ldots, \omega^{\frac{-(d-1)}{2}}\right)$ and $\vec{r}=\left(\omega^{\frac{1}{d}}, \omega^{\frac{2}{d}}, \ldots, \omega^{\frac{d-1}{d}}\right)$

Result is circuit with post-selections over Clifford $+\sqrt[d]{Z}$ gateset ${ }^{4}$.

[^2]
Overview

1 Introducing the Qudit ZH-Calculus

2 Universality for Linear Maps of Qudit ZH

3 Computational Universality and Generalized Toffoli

4 Conclusion

Thanks

(AirBnB cat that fell asleep next to me while working on slides)

Qudit Gates

"Toffoli"

$|0\rangle$-controlled X

A Proof

Proof.

A Proof

Proof.

For qubit ZH, this means that Hadamard self-inverseness follows from H-fusion, as

Sketch

Write a given matrix as entry-wise product of simpler matrices, e.g.

$$
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)=\left(\begin{array}{ll}
a & 1 \\
1 & a
\end{array}\right) \star\left(\begin{array}{ll}
1 & b \\
1 & 1
\end{array}\right) \star\left(\begin{array}{ll}
1 & 1 \\
c & 1
\end{array}\right)
$$

Sketch

Write a given matrix as entry-wise product of simpler matrices, e.g.

$$
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)=\left(\begin{array}{ll}
a & 1 \\
1 & a
\end{array}\right) \star\left(\begin{array}{ll}
1 & b \\
1 & 1
\end{array}\right) \star\left(\begin{array}{ll}
1 & 1 \\
c & 1
\end{array}\right)
$$

Sketch

For a matrix $L=\sum_{\vec{x}, \vec{y}} \lambda_{\vec{x}, \vec{y}}|\vec{y}\rangle\langle\vec{x}|$ containing only 1 s and $r \mathrm{~s}$, describe the location of the 1 s as a logical formula

$$
\varphi_{L}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=\bigvee_{\substack{i_{1}, \ldots i_{n} \\ j_{1}, \ldots j_{m} \\\left\{\{0, \ldots, d-1\} \\ \lambda_{i_{1}} \ldots i_{n} \ldots j_{1}=1\right.}} \bigwedge_{k=1}^{n}\left(x_{k}=i_{k}\right) \wedge \bigwedge_{\ell=1}^{m}\left(y_{\ell}=j_{\ell}\right)
$$

Sketch

Inductively construct polynomial p_{L} such that

$$
p_{L}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=0 \Longleftrightarrow \varphi_{L}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

Needs that \mathbb{Z}_{d} has no zero-divisors if d prime
11 In the case of $\varphi=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right)=p_{2}\left(x_{1}, \ldots, x_{n}\right)\right)$ for

$$
p_{1}, p_{2} \in\left(\mathbb{Z}_{d}\right)\left[X_{1}, \ldots, X_{n}\right], \text { set } p_{\varphi}=p_{1}-p_{2}
$$

2 In the case of $\varphi=\neg \varphi^{\prime}$, set $p_{\varphi}=1-\left(p_{\varphi^{\prime}}\right)^{d-1}$
3 In the case of $\varphi=\varphi_{1} \vee \varphi_{2}$, set $p_{\varphi}=p_{\varphi_{1}} \cdot p_{\varphi_{2}}$

Turning Polynomial into ZH-diagram

Diagram of $|x, y\rangle \mapsto|p(x, y)\rangle$ for $p(x, y)=(x-y)(x+1-y)$:

Turning Polynomial into ZH-diagram

Diagram of $|x, y\rangle \mapsto|p(x, y)\rangle$ for $p(x, y)=(x-y)(x+1-y)$:

Apply $x \mapsto x^{d-1}$, post-select with $H(r)=\left(1, r, r^{2}, \ldots, r^{d-1}\right) \Rightarrow$ get state evaluating to 1 if $p(x, y)=0$ and r otherwise

[^0]: ${ }^{2}$ Titouan Carette and Emmanuel Jeandel. "On a recipe for quantum graphical languages".
 ${ }^{3}$ Miriam Backens et al. "Completeness of the ZH-calculus".

[^1]: ${ }^{2}$ Titouan Carette and Emmanuel Jeandel. "On a recipe for quantum graphical languages".
 ${ }^{3}$ Miriam Backens et al. "Completeness of the ZH -calculus".

[^2]: ${ }^{4}$ Lia Yeh (2023): Scaling W states in the qudit Clifford hierarchy. In: Proceedings of the 1st International Workshop on the Art, Science, and Engineering of Quantum Programming, arXiv.2304.12504

