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Coherence, nonlocality, and contextuality are
nonclassical features of quantum theory

resources providing advantage in metrology, communication, computation

Can we understand the interplay between them?
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We introduce a graph-based approach to derive classicality inequalities:
generalises basis-independent coherence witnesses
recovers all noncontextuality inequalities from the CSW approach

also related to preparation contextuality in a specific setup
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Take a graph G (event graph).

Vertex i € V(G) represents random variable A; valued in A
Edge weight r;j = Prob(A; = A;)

Note: in dichotomic case A = {—1,+1}, (AjA;) = 2r; — 1.
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Take a graph G (event graph).

r
Vertex i € V(G) represents random variable A; valued in A 12 7"23
Edge weight r;j = Prob(A; = A;)

Note: in dichotomic case A = {—1,+1}, (AjA;) = 2r; — 1. 1 713 3

An edge weighting r : E(G) — [0, 1] is classical
if it arises in this fashion from jointly distributed {A;};cv ().

~~ Classical polytope Cg C [0, 1]F*).



Vertices of the classical polytope

» Vertices of C; are deterministic edge-labellings o : E(G) — {0, 1}
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Vertices of the classical polytope

» Vertices of C; are deterministic edge-labellings o : E(G) — {0, 1}

» arising from underlying vertex labelling V(H) — A
with 1 meaning =, 0 meaning #

Allowed labellings are those that do not violate the transitivity of equality
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The classical polytope

Forbidden (1,1,0) (1,0,1) (0,1,1)
Allowed  (0,00) (1,11) (0,0,1) (0,1,0) (1,0,0)
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Inequalities from logical conditions

Boole's ‘conditions of possible experience’ (cf. Pitowsky, Abramsky-Hardy’s ‘logical Bell inequalities’)
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Inequalities from logical conditions
Boole's ‘conditions of possible experience’ (cf. Pitowsky, Abramsky—Hardy’s ‘logical Bell inequalities’)

Inconsistent statements
A=A, Ary=A3 A1 #A3
yield inequality

Pr(A; = Ag) + Pr(A; = Ag) + Pr(Ay # Ag) < 2
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Inequalities from logical conditions
Boole's ‘conditions of possible experience’ (cf. Pitowsky, Abramsky—Hardy’s ‘logical Bell inequalities’)

Inconsistent statements
A=A Ay=A3 A #A;s
yield inequality

Pr(A; = Az) + Pr(Az = A3) + Pr(A; # A3) <2
PF(A1 = Az) + PI'(AZ = A3) + (1 — PF(A1 = Ag)) <2
PT(A1 = Az) I PI’(AZ = A3) — PI'(A1 = A3) <1

Ma +rp3 —rz <1

6/18



Classical polytope inequalities

» Cycle inequalities (Brod—Galvao arXiv:1902.11039 [quant-ph])
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» Cycle inequalities (Brod—Galvao arXiv:1902.11039 [quant-ph])
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Classical polytope inequalities

» Cycle inequalities (Brod—Galvao arXiv:1902.11039 [quant-ph])
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Classical polytope inequalities

» Cycle inequalities (Brod—Galvao arXiv:1902.11039 [quant-ph])

S fijsr — i < n—2 G i= Kn Ba
@ - - @
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» New inequality for K, g ‘~ o
. ‘:\0
(M2 +r3 +ra) — (rs +raa +ra) <1 N
R ‘“ .
/) XCLTTTTTTTIN ©)
» Family of inequalities for K, R,:= K, ,

o i = Yol <1
Gh:={{1,i}|i=2,...,n} R,:=E(Kp)\G,
ZeeGnre _ZeeRnre :k_ZeeRnre <k- (S) =1- (k?) <1
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Classical polytope inequalities
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Coherence



The study of coherence is usually with respect to a fixed reference basis.

We are interested in a basis independent notion



The study of coherence is usually with respect to a fixed reference basis.
We are interested in a basis independent notion
Relational property of a set of states

A set os states is coherence-free if these can be simultaneously diagonalised



Coherence
Set of states {|¢) }icv(n) and consider overlaps r; = [{¢i|¢;)[> = Tr(pip))-
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Set of states {|¢) }icv(n) and consider overlaps r; = [{¢i|¢;)[> = Tr(pip))-

Equals probability of preparing |¢;) and projecting onto |¢;)

Can be measured using a SWAP test: p(0) = M |0)
)
%)
pn 0 0O on 0 O
If coherence-freep=| g .. o=1| o .
0 0 pa 0 0 ow

then Tr(po) = >, piicii = i piicjj

’ Any r € Cs admits realisation by coherence-free set of states
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Quantum violations
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Nonlocality and contextuality



CHSH inequality

» Cycle inequality rip +ro3 +r3g —rg < 2
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Cycle inequality Mo +rp3+r3—rg < 2

Interpret vertices as Alic€e's or Bob’s local measurements:
vi=A, Vv2=By, v3=A; Vv4=8B; @ 3

As a contextuality scenario, only non-trivial inequalities given by correlations

12/18



Cycle inequality Mo +rp3+r3—rg < 2

Interpret vertices as Alic€e's or Bob’s local measurements:
vi=A, Vv2=By, v3=A; Vv4=8B; @ 3

As a contextuality scenario, only non-trivial inequalities given by correlations

Measuring on singlet state: rag = p;‘f =1—p2B

12/18



Cycle inequality Mo +rp3+r3—rg < 2

Interpret vertices as Alic€e's or Bob’s local measurements:
vi=A, Vv2=By, v3=A; Vv4=8B; @ 3

As a contextuality scenario, only non-trivial inequalities given by correlations

Measuring on singlet state: rag = p;‘f =1—p2B

So the facet inequality is rewritten as

p/;w& +p1;231 _|_p/3£232 _p?;Bz < 2.

CHSH inequality




CSW approach: exclusivity graphs

Take a graph H, interpreted as exclusivity graph:
» vertices: measurement events

» edges: exclusive events (distinguishable by a measurement)

In quantum mechanics:

» vertices: projectors (PVM elements)
» edges: orthogonality
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Take a graph H, interpreted as exclusivity graph:
vertices: measurement events
edges: exclusive events (distinguishable by a measurement)

In quantum mechanics:

vertices: projectors (PVM elements)
edges: orthogonality

Consider assignments of probabilities to events V(H) — [0, 1].



CSW approach: noncontextual polytope

Deterministic assignments V(H) — {0, 1} — equivalently, subsets of V(H).

Which are valid truth-values assignments?
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CSW approach: noncontextual polytope

Deterministic assignments V(H) — {0, 1} — equivalently, subsets of V(H).

Which are valid truth-values assignments?

» S C V(H) is stable if no two vertices are adjacent
» Take ys: V(H) — {0,1}

» Stability indicates that exclusive measurement events cannot be simultaneously true

Noncontextual polytope STAB(H) C [0, 1]V(H):

STAB(H) := ConvHull {Xs € [0,1]V® | S C V(H) stable} :

14/18



Recovering the noncontextual polytope
Start with a graph H, thought of as an exclusivity graph (in CSW sense)
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Recovering the noncontextual polytope
Start with a graph H, thought of as an exclusivity graph (in CSW sense)

Define a new graph H., by adjoining a new vertex connected to every existing vertices:
> V(H.) = V(H) U {4}
> E(H.) = E(H)U{{v,¢} [veV(H)}
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Recovering the noncontextual polytope
Start with a graph H, thought of as an exclusivity graph (in CSW sense)

Define a new graph H., by adjoining a new vertex connected to every existing vertices:
> V(H.) = V(H) U {4}
> E(H.) = E(H)U{{v,¢} [veV(H)}

Impose overlap 0 on the edges of H.
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Recovering the noncontextual polytope

Imposing overlap 0 on the edges of H determines a cross-section subpolytope of Cy:

CY. :={re Cy|Ve € E(H). re = 0}
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Recovering the noncontextual polytope

Imposing overlap 0 on the edges of H determines a cross-section subpolytope of Cy:
CY. :={re Cy|Ve € E(H). re = 0}

Then
CY. = STAB(H)

Concretely,
Ch- = {Ogm)} x STAB(H)

Noncontextuality inequalites obtained from Cy- inegs by setting E(H) coefficients to zero.
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Recovering noncontextality ineqalities
6-vertex wheel graph Weg

Cw, has a facet-defining inequality:

—IMp — o3 — 34 — a5 — M5+ e + 2 + 3 + a6 +rse < 2
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Recovering noncontextality ineqalities
6-vertex wheel graph Weg

Cw, has a facet-defining inequality:

—Ip —rp3 — 34 — Fa5 — M5 + e + 26 + 36 + a6 +rse < 2

» Central vertex: quantum state

» Neighboring vertices in outer 5-cycle: orthogonal projectors (5

» r,6 = probability of successful projection of the central vertex state onto the projector
associated with vertex v.
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6-vertex wheel graph Weg

Cw, has a facet-defining inequality:

—Ip — o3 — 34 — F45 — 15+ e + 26 + 3 + a6 +rse < 2

Central vertex: quantum state

Neighboring vertices in outer 5-cycle: orthogonal projectors (5

r,6 = probability of successful projection of the central vertex state onto the projector
associated with vertex v.

Imposing exclusivity constraints rjj = 0 in the outer cycle yields the inequality

Me + 26 + r3e + rae + rsp < 2,

KCBS inequality




Application: quantum interrogation in MZ interferometer
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