Causal inference in non-classical theories and compatibility with space-time structure

V. Vilasini

Institute for Theoretical Physics

TH zürich

Joint work with Roger Colbeck (University of York, U.K.)

- V. Vilasini and Roger Colbeck. PRA, 106, 042204 (2022).
- V. Vilasini and Roger Colbeck. PRL, 129, 110401 (2022).

Different notions of causality

Spatio-temporal notions

Spatio-temporal notions

Information-theoretic notions

Spatio-temporal notions

Information-theoretic notions

In physical experiments, these notions must play together!

Relativistic causality principles E.g., No signalling outside the future lightcone

Relativistic causality principles E.g., No signalling outside the future lightcone

These are about the compatibility between spatiotemporal and information-theoretic causal order relations

How can we formulate compatibility between informationtheoretic and spatio-temporal causal structures? How can we formulate compatibility between informationtheoretic and spatio-temporal causal structures?

- General theories: Vilasini and Colbeck, PRA+PRL 2022
- 2 Quantum theory: Vilasini and Renner, arXiv 2022

How can we formulate compatibility between informationtheoretic and spatio-temporal causal structures?

- General theories: Vilasini and Colbeck, PRA+PRL 2022
- 2 Quantum theory: Vilasini and Renner, arXiv 2022

Applicable to two classes of information-theoretic causal structures

- 1 Causal models (possibly non-classical, cyclic) (today)
- 2 Indefinite causal structures (QPL 2022)

1 Framework: Causal modelling and causal inference

- Framework: Causal modelling and causal inference
- 2 Framework: Compatibility with space-time

- 1 Framework: Causal modelling and causal inference
- 2 Framework: Compatibility with space-time
- 3 Result: Causal loops in Minkowski space-time

- 1 Framework: Causal modelling and causal inference
- 2 Framework: Compatibility with space-time
- 3 Result: Causal loops in Minkowski space-time
- ④ Conclusion and outlook

Causal models and causal inference: motivation

Quantum correlations challenge classical causal explanations \Rightarrow Develop quantum (/non-classical) causal models

Pearl, 2000 and 2009. Spirtes, 2001. Wood and Spekkens 2015.

Causal structures and correlations

• Causal structure: Directed graph *G*.

Henson, Lal, Pusey. 2014. Vilasini and Colbeck 2022.

- Causal structure: Directed graph *G*.
- Nodes: observed (classical) and unobserved (any theory)

- Causal structure: Directed graph *G*.
- Nodes: observed (classical) and unobserved (any theory)
- Directed edges: "flow of info" through appropriate channels

- Causal structure: Directed graph *G*.
- Nodes: observed (classical) and unobserved (any theory)
- Directed edges: "flow of info" through appropriate channels

Henson, Lal, Pusey. 2014. Vilasini and Colbeck 2022.

- Causal structure: Directed graph \mathcal{G} .
- Nodes: observed (classical) and unobserved (any theory)
- Directed edges: "flow of info" through appropriate channels

Observed distribution: Joint probability distribution $P_{\mathcal{G}}(S_{obs})$ over all observed nodes S_{obs} of \mathcal{G} . For \mathcal{G}^{Bell} , P(XYAB). Constraints on $\overline{P_{\mathcal{G}}(S_{obs})}$ from \mathcal{G}

- Theory-dependent:
- Theory-independent:

Constraints on $P_{\mathcal{G}}(S_{obs})$ from \mathcal{G}

- Theory-dependent: E.g., Bell inequalities in \mathcal{G}^{Bell}
- Theory-independent:

Constraints on $P_{\mathcal{G}}(S_{obs})$ from \mathcal{G}

- Theory-dependent: E.g., Bell inequalities in \mathcal{G}^{Bell}
- Theory-independent: Graph separation (d-separation) in G implies conditional independence in P_G(S_{obs}).

Constraints on $P_{\mathcal{G}}(S_{obs})$ from \mathcal{G}

- Theory-dependent: E.g., Bell inequalities in \mathcal{G}^{Bell}
- Theory-independent: Graph separation (d-separation) in G implies conditional independence in P_G(S_{obs}).

E.g., Non-signalling constraints in \mathcal{G}^{Bell}

The d-separations $X \perp^d B | A$ and $Y \perp^d A | B$ imply P(X|AB) = P(X|A) and P(Y|AB) = P(Y|B).

Henson, Lal, Pusey 2014. Bell 1964. Pearl 2009.

Several different quantum causal modelling/inference frameworks

• Bottom-up*:

• Top-down**:

*Liefer Spekkens 2013, Hensen, Lal, Pusey 2014, Pienaar 2015, Costa and Shrapnel 2016, Barrett, Lorenz, Oreshkov 2020 and 2022. Several different quantum causal modelling/inference frameworks

- Bottom-up*: Start with assumptions on causal mechanisms and derive *d*-separation and other properties (often acyclic)
- Top-down**:

Liefer Spekkens 2013, Hensen, Lal, Pusey 2014, Pienaar 2015, Costa and Shrapnel 2016, Barrett, Lorenz, Oreshkov 2020 and 2022. Several different quantum causal modelling/inference frameworks

- Bottom-up*: Start with assumptions on causal mechanisms and derive *d*-separation and other properties (often acyclic)
- Top-down**: Start by assuming *d*-separation on *S*_{obs} and derive consequences for causal mechanisms (also cyclic)

^{*}Liefer Spekkens 2013, Hensen, Lal, Pusey 2014, Pienaar 2015, Costa and Shrapnel 2016, Barrett, Lorenz, Oreshkov 2020 and 2022.

Interventions and affects relations

Correlation alone can't single out a causal explanation, need interventions!

Pre-intervention: \mathcal{G}

Post-intervention: $\mathcal{G}_{do(S)}$

An intervention on $S \subseteq S_{obs}$ is characterised by a graph $\mathcal{G}_{do(S)}$ obtained from \mathcal{G} by cutting off all incoming edges to S.

An intervention on $S \subseteq S_{obs}$ is characterised by a graph $\mathcal{G}_{do(S)}$ obtained from \mathcal{G} by cutting off all incoming edges to S.

<u>Affects relation</u>: S affects C iff $P_{\mathcal{G}_{do(S)}}(C|S) \neq P_{\mathcal{G}}(C)$

An intervention on $S \subseteq S_{obs}$ is characterised by a graph $\mathcal{G}_{do(S)}$ obtained from \mathcal{G} by cutting off all incoming edges to S.

<u>Affects relation</u>: S affects C iff $P_{\mathcal{G}_{do}(S)}(C|S) \neq P_{\mathcal{G}}(C)$

In general, $P_{\mathcal{G}_{do(S)}}(C|S) \neq P_{\mathcal{G}}(C|S)$ except if S is parentless

In paper: rules for relating $P_{\mathcal{G}_{do(S)}}$ and $P_{\mathcal{G}}$ in cyclic, non-classical causal models

<u>Causal inference</u>: X affects $Y \Rightarrow X$ is a cause of Y in \mathcal{G} But converse is NOT true! E.g., one-time pad <u>Causal inference</u>: X affects $Y \Rightarrow X$ is a cause of Y in \mathcal{G} But converse is NOT true! E.g., one-time pad

<u>Causal inference</u>: X affects $Y \Rightarrow X$ is a cause of Y in \mathcal{G} But converse is NOT true! E.g., one-time pad

 \Rightarrow *M* is a cause of *C* but *M* does not affect *C*

Higher-order (HO) affects relation: X affects Y given do(Z)

Captures signalling between sets of RVs X and Y when given an intervention performed on another set Z of RVs

Higher-order (HO) affects relation: X affects Y given do(Z)

Captures signalling between sets of RVs X and Y when given an intervention performed on another set Z of RVs

In paper: Causal inference results for HO affects, can infer more.

Embedding causal models in space-time

Space-time: partially ordered set \mathcal{T} with order relation \preceq

Space-time: partially ordered set \mathcal{T} with order relation \preceq

Space-time embedding $\mathcal{E}: X \in S_{obs} \mapsto O(X) \in \mathcal{T}$. Leads to ordered random variable (ORV), $\mathcal{X} = (X, O(X))$. Space-time: partially ordered set \mathcal{T} with order relation \preceq

Space-time embedding $\mathcal{E}: X \in S_{obs} \mapsto O(X) \in \mathcal{T}$. Leads to ordered random variable (ORV), $\mathcal{X} = (X, O(X))$.

Inclusive future of an ORV: $\overline{\mathcal{F}}(\mathcal{X}) := \{P \in \mathcal{T} | P \succeq O(X)\}$

Compatibility: Ensures no signalling outside space-time future (In particular: X affects $Y \Rightarrow \overline{\mathcal{F}}(Y) \subseteq \overline{\mathcal{F}}(X)$ for RVs)

Compatibility: Ensures no signalling outside space-time future (In particular: X affects $Y \Rightarrow \overline{\mathcal{F}}(Y) \subseteq \overline{\mathcal{F}}(X)$ for RVs)

Example 1:

 $C = A \oplus B$, B uniform

• Affects.: B affects C, AB affects C (A does not affect C)

Compatibility: Ensures no signalling outside space-time future (In particular: X affects $Y \Rightarrow \overline{\mathcal{F}}(Y) \subseteq \overline{\mathcal{F}}(X)$ for RVs)

• Affects.: B affects C, AB affects C (A does not affect C)

Compatibility: Ensures no signalling outside space-time future (In particular: X affects $Y \Rightarrow \overline{\mathcal{F}}(Y) \subseteq \overline{\mathcal{F}}(X)$ for RVs)

 $C = A \oplus B$, B uniform

C = B, B uniform

- Affects.: *B* affects *C*, *AB* affects *C* (*A* does not affect *C*)
- Compatibility: $\overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{A}) \cap \overline{\mathcal{F}}(\mathcal{B})$ in 1, $\overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{B})$ in 2

Compatibility: Ensures no signalling outside space-time future (In particular: X affects $Y \Rightarrow \overline{\mathcal{F}}(Y) \subseteq \overline{\mathcal{F}}(X)$ for RVs)

 $C = A \oplus B$, B uniform

C = B, B uniform

- Affects.: *B* affects *C*, *AB* affects *C* (*A* does not affect *C*)
- Compatibility: $\overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{A}) \cap \overline{\mathcal{F}}(\mathcal{B})$ in 1, $\overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{B})$ in 2

Can't infer compatibility conditions from interventional data?

Compatibility: Ensures no signalling outside space-time future (In particular: X affects $Y \Rightarrow \overline{\mathcal{F}}(Y) \subseteq \overline{\mathcal{F}}(X)$ for RVs)

 $C = A \oplus B$, B uniform

C = B, B uniform

- Affects.: *B* affects *C*, *AB* affects *C* (*A* does not affect *C*)
- Compatibility: $\overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{A}) \cap \overline{\mathcal{F}}(\mathcal{B})$ in 1, $\overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{B})$ in 2
- Can't infer compatibility conditions from interventional data? Solution: We can, using higher-order affects relations

- Affects rel.: B affects C, AB affects C (A does not affect C)
- Higher-order affects rel: A affects C given do(B) in 1, not 2

- Affects rel.: B affects C, AB affects C (A does not affect C)
- Higher-order affects rel: A affects C given do(B) in 1, not 2

⇒ Infer A is a cause of C in Ex 1 but not in Ex 2 ⇒ $\overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{A})$ for compat in Ex 1 but not Ex 2

 $\exists \text{ causal model with affects relations}^{*:} B \underline{\text{ does not affect }} A \text{ or } C, B \underline{\text{ affects }} AC \underline{\text{ Compatibility conditions}} \\ \overline{\mathcal{F}}(\mathcal{A}) \cap \overline{\mathcal{F}}(\mathcal{C}) \subseteq \overline{\mathcal{F}}(\mathcal{B}) \end{bmatrix}$

Grunhaus, Popescu, Rohrlich 1996.

*Vilasini and Colbeck, PRA+PRL 2022. Vilasini, PhD thesis, arXiv:2102.02393.

 $\exists \text{ causal model with affects relations}^{*:} B \text{ does not affect } A \text{ or } C, B \text{ affects } AC \text{ Compatibility conditions:} \\ \overline{\mathcal{F}}(A) \cap \overline{\mathcal{F}}(C) \subseteq \overline{\mathcal{F}}(B) \end{bmatrix}$

Causal models for post-quantum "jamming" theories

^KGrunhaus, Popescu, Rohrlich 1996

*Vilasini and Colbeck, PRA+PRL 2022. Vilasini, PhD thesis, arXiv:2102.02393.

Causal loops in Minkowski space-time

NO! (can construct cyclic causal model)

NO! (can construct cyclic causal model)

Affects relations: AC affects B, B affects ACCompatibility conditions: $\overline{\mathcal{F}}(\mathcal{A}) \cap \overline{\mathcal{F}}(\mathcal{C}) = \overline{\mathcal{F}}(\mathcal{B})$

NO! (can construct cyclic causal model)

Affects relations: AC affects B, B affects ACCompatibility conditions: $\overline{\mathcal{F}}(\mathcal{A}) \cap \overline{\mathcal{F}}(\mathcal{C}) = \overline{\mathcal{F}}(\mathcal{B})$

Operationally detectable causal loop embedded in Minkowski space-time without leading to superluminal signaling!

- This causal loop is only embeddable in (1 + 1)-Minkowski
- Several distinct classes of operationally detectable loops exist

- This causal loop is only embeddable in (1 + 1)-Minkowski
- Several distinct classes of operationally detectable loops exist

Causal loops compatibly embeddable in (3 + 1)-Minkowski space-time? Physical principles for ruling them out?

Conclusions

Physical meaning depends on space-time embedding

Physical meaning depends on space-time embedding

Closed timelike curve

Node \mapsto space-time event (VV and Colbeck)

Physical meaning depends on space-time embedding

Closed timelike curve

Physical feedback

Node \mapsto space-time event (VV and Colbeck)

Node \mapsto space-time region (VV and Renner)

No superluminal signalling (SS) \Rightarrow no superluminal causation (SC)

No superluminal signalling (SS) \neq no superluminal causation (SC)

 No SS DOES NOT rule out causal loops in Minkowski (VV and Colbeck) No superluminal signalling (SS) \neq no superluminal causation (SC)

- No SS DOES NOT rule out causal loops in Minkowski (VV and Colbeck)
- No SC DOES rule out causal loops in Minkowski (VV and Renner ⇒ no-go for indefinite causal structures)
No superluminal signalling (SS) \neq no superluminal causation (SC)

- No SS DOES NOT rule out causal loops in Minkowski (VV and Colbeck)
- No SC DOES rule out causal loops in Minkowski (VV and Renner ⇒ no-go for indefinite causal structures)

<u>Take home:</u> Important to disentangle

- Information-theoretic vs space-time causality
- Causation, correlation, signalling
- Different principles of relativistic causality

Outlook

• Conditions for ruling out causal loops in a space-time? (Maarten Grothus: poster on Monday)

- Conditions for ruling out causal loops in a space-time? (Maarten Grothus: poster on Monday)
- Quantum interventions, relation to tensor networks (Carla Ferradini: poster on Tuesday)

- Conditions for ruling out causal loops in a space-time? (Maarten Grothus: poster on Monday)
- Quantum interventions, relation to tensor networks (Carla Ferradini: poster on Tuesday)
- Causality beyond fixed space-time (q. clocks, q. gravity) (Lukas Schmitt: poster on Monday, planned work with Lin-Qing Chen)

- Conditions for ruling out causal loops in a space-time? (Maarten Grothus: poster on Monday)
- Quantum interventions, relation to tensor networks (Carla Ferradini: poster on Tuesday)
- Causality beyond fixed space-time (q. clocks, q. gravity) (Lukas Schmitt: poster on Monday, planned work with Lin-Qing Chen)
- Higher-order affects relations for causal discovery?

- Conditions for ruling out causal loops in a space-time? (Maarten Grothus: poster on Monday)
- Quantum interventions, relation to tensor networks (Carla Ferradini: poster on Tuesday)
- Causality beyond fixed space-time (q. clocks, q. gravity) (Lukas Schmitt: poster on Monday, planned work with Lin-Qing Chen)
- Higher-order affects relations for causal discovery?
- Causal inference techniques for emergence of space-time?

- Conditions for ruling out causal loops in a space-time? (Maarten Grothus: poster on Monday)
- Quantum interventions, relation to tensor networks (Carla Ferradini: poster on Tuesday)
- Causality beyond fixed space-time (q. clocks, q. gravity) (Lukas Schmitt: poster on Monday, planned work with Lin-Qing Chen)
- Higher-order affects relations for causal discovery?
- Causal inference techniques for emergence of space-time?

THANK YOU!