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How can we formulate compatibility between information-
theoretic and spatio-temporal causal structures?

1 General theories: Vilasini and Colbeck, PRA+PRL 2022

2 Quantum theory: Vilasini and Renner, arXiv 2022

Applicable to two classes of information-theoretic causal structures

1 Causal models (possibly non-classical, cyclic) (today)

2 Indefinite causal structures (QPL 2022)



How can we formulate compatibility between information-
theoretic and spatio-temporal causal structures?

1 General theories: Vilasini and Colbeck, PRA+PRL 2022

2 Quantum theory: Vilasini and Renner, arXiv 2022

Applicable to two classes of information-theoretic causal structures

1 Causal models (possibly non-classical, cyclic) (today)

2 Indefinite causal structures (QPL 2022)



Structure of this talk:

1 Framework: Causal modelling and causal inference

2 Framework: Compatibility with space-time

3 Result: Causal loops in Minkowski space-time

4 Conclusion and outlook



Structure of this talk:

1 Framework: Causal modelling and causal inference

2 Framework: Compatibility with space-time

3 Result: Causal loops in Minkowski space-time

4 Conclusion and outlook



Structure of this talk:

1 Framework: Causal modelling and causal inference

2 Framework: Compatibility with space-time

3 Result: Causal loops in Minkowski space-time

4 Conclusion and outlook



Structure of this talk:

1 Framework: Causal modelling and causal inference

2 Framework: Compatibility with space-time

3 Result: Causal loops in Minkowski space-time

4 Conclusion and outlook



Causal models and causal inference: motivation
————————————————————————————————
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Quantum correlations challenge classical causal explanations
⇒ Develop quantum (/non-classical) causal models

Pearl, 2000 and 2009. Spirtes, 2001. Wood and Spekkens 2015.
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• Causal structure: Directed graph G.

• Nodes: observed (classical) and unobserved (any theory)
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Constraints on PG(Sobs) from G

• Theory-dependent:

E.g., Bell inequalities in GBell

• Theory-independent:

Graph separation (d-separation) in G
implies conditional independence in PG(Sobs).

E.g., Non-signalling constraints in GBell

A

X

B

Y

Λ

The d-separations X ⊥d B|A and Y ⊥d A|B imply
P(X |AB) = P(X |A) and P(Y |AB) = P(Y |B).
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Several different quantum causal modelling/inference frameworks

• Bottom-up*:

Start with assumptions on causal mechanisms
and derive d-separation and other properties (often acyclic)

• Top-down**:

Start by assuming d-separation on Sobs and
derive consequences for causal mechanisms (also cyclic)

*Liefer Spekkens 2013, Hensen, Lal, Pusey 2014, Pienaar 2015, Costa and Shrapnel 2016, Barrett, Lorenz,
Oreshkov 2020 and 2022.
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Interventions and affects relations
————————————————————————————————



Correlation alone can’t single out a causal explanation, need interventions!
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Pre-intervention: G

S C

G

Post-intervention: Gdo(S)

S C

IS G

An intervention on S ⊆ Sobs is characterised by a graph Gdo(S)

obtained from G by cutting off all incoming edges to S .

Affects relation: S affects C iff PGdo(S)
(C |S) ̸= PG(C )

In general, PGdo(S)
(C |S) ̸= PG(C |S) except if S is parentless

In paper: rules for relating PGdo(S)
and PG in cyclic, non-classical causal models
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Causal inference: X affects Y ⇒ X is a cause of Y in G

But converse is NOT true! E.g., one-time pad
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M, K , C binary RVs

K uniformly distributed, C = M ⊕ K

M does not affect C but MK affects C

⇒ M is a cause of C but M does not affect C
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Higher-order (HO) affects relation: X affects Y given do(Z )

Captures signalling between sets of RVs X and Y when given an
intervention performed on another set Z of RVs

In paper: Causal inference results for HO affects, can infer more.
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Embedding causal models in space-time
————————————————————————————————



Space-time: partially ordered set T with order relation ⪯

Space-time embedding E : X ∈ Sobs 7→ O(X ) ∈ T .
Leads to ordered random variable (ORV), X = (X ,O(X )).

Inclusive future of an ORV: F(X ) := {P ∈ T |P⪰O(X )}
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Compatibility: Ensures no signalling outside space-time future
(In particular: X affects Y ⇒ F(Y ) ⊆ F(X ) for RVs)
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C

Example 1:

C = A⊕ B, B uniform

A B

C

Example 2:

C = B, B uniform

• Affects.: B affects C , AB affects C (A does not affect C )

• Compatibility: F(C) ⊆ F(A) ∩ F(B) in 1, F(C) ⊆ F(B) in 2

Can’t infer compatibility conditions from interventional data?
Solution: We can, using higher-order affects relations
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Example 3: Jamming non-local correlations*
Signalling jointly but not individually to spacelike separated parties

BA C

Λ

∃ causal model with affects relations**:
B does not affect A or C , B affects AC

Compatibility conditions:
F(A) ∩ F(C) ⊆ F(B)

Causal models for post-quantum “jamming” theories

*Grunhaus, Popescu, Rohrlich 1996.

**Vilasini and Colbeck, PRA+PRL 2022. Vilasini, PhD thesis, arXiv:2102.02393.
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Causal loops in Minkowski space-time
————————————————————————————————



Does compatibility with acyclic space-time rule out
information-theoretic causal loops?

NO! (can construct cyclic causal model)
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Affects relations: AC affects B, B affects AC
Compatibility conditions: F(A) ∩ F(C) = F(B)

Operationally detectable causal loop embedded in Minkowski
space-time without leading to superluminal signaling!
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• This causal loop is only embeddable in (1 + 1)-Minkowski

• Several distinct classes of operationally detectable loops exist

Causal loops compatibly embeddable in (3 + 1)-Minkowski
space-time? Physical principles for ruling them out?
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No superluminal signalling (SS) ̸⇒ no superluminal causation (SC)

• No SS DOES NOT rule out causal loops in Minkowski
(VV and Colbeck)

• No SC DOES rule out causal loops in Minkowski
(VV and Renner ⇒ no-go for indefinite causal structures)

Take home: Important to disentangle

• Information-theoretic vs space-time causality

• Causation, correlation, signalling

• Different principles of relativistic causality
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Outlook
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• Conditions for ruling out causal loops in a space-time?
(Maarten Grothus: poster on Monday)

• Quantum interventions, relation to tensor networks
(Carla Ferradini: poster on Tuesday)

• Causality beyond fixed space-time (q. clocks, q. gravity)
(Lukas Schmitt: poster on Monday, planned work with Lin-Qing Chen)

• Higher-order affects relations for causal discovery?

• Causal inference techniques for emergence of space-time?

THANK YOU!
————————————————
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