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Universal use of quantum theory (agents within Heisenberg cut)

effectively classical fully quantum

Wigner’s Friend Scenarios (WFS): agents as fully quantum systems

Wigner 1967, Frauchiger and Renner 2018, Brukner 2018, Bong. et. al. 2020....
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Frauchiger and Renner (FR): Agents modelling each other as
quantum systems and reasoning using classical logic in WFS
will run into logical paradoxes!

A consistent formalism using which quantum agents
can reason logically, make and test physical predictions?
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• Operational formalisation of H-cuts

• Precise neccesary condition for FR-type paradoxes
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• Can measure another quantum system and store outcome

• Can compute probabilities, perform basic logical deductions
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The FR no-go theorem and apparent paradox
————————————————————————————————



Q If Born rule assigns probability 1 to a measurement outcome,
an agent can be certain of that outcome.

( KA(a = i) : Agent A knows with certainty that a = i)

C KBKA(a = i) ⇒ KB(a = i)

S KA(a = i) ⇒ ¬KA(a = i ′), ∀i ̸= i ′

U Agents can model others’ labs unitarily, have full q. control

Theorem (FR): ∃ a protocol where agents reasoning using Q,
U, C and S will arrive at logically contradictory predictions.

Frauchiger and Renner 2018. Nurgalieva and del Rio 2019.
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The FR protocol (entanglement version)
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Applying U to Alice and Bob’s labs
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A simple resolution to FR paradoxes
————————————————————————————————



Wigner’s original expt: unitarity vs projection postulate
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Bob meas S in
{|0⟩ , |1⟩} basis
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S
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(|0⟩+ |1⟩)S

Unitary MB
unitary

: xB = 0

|ψ⟩S 7→ 1√
2
(|00⟩+|11⟩)SB = |fail⟩SB

⇒ P(w = ok|xB = 0) = 0

Projection MB
projection

: xB = 1

|ψ⟩S 7→ |00⟩ or |11⟩ or mixture

⇒ P(w = ok|xB = 1) > 0

• Predictions do depend on how mmt is modelled (xB ∈ {0, 1})!

• Formalises the H-cut: agents’ “memory’ as q. system vs
storing effectively classical values
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FR paradox disappears once “settings”/H-cuts are accounted for

FR’s statements

• u = ok ⇒ b = 1 “P(b = 1|u = ok) = 1′′

• b = 1 ⇒ a = 1 “P(a = 1|b = 1) = 1′′

• a = 1 ⇒ w = fail “P(w = fail |a = 1) = 1′′

• P(u = w = ok) = 1
12 > 0

Explicit statements in our framework

• u = ok ∧ (xA = 0, xB = 1) ⇒ b = 1

• b = 1 ∧ (xA = 1, xB = 1) ⇒ a = 1

• a = 1 ∧ (xA = 1, xB = 0) ⇒ w = fail

• P(u = w = ok |(xA = 0, xB = 0)) = 1
12 > 0

Cannot be chained together by any axiom of classical logic



Necessary condition for FR-type apparent paradoxes

I outcome probabilities of one mmt are independent of another
mmt’s setting x ∈ {0, 1} (unitary vs projection)

Q, U, C, S formalise FR’s assumptions Q, U, C , S , but taking
into account settings x ∈ {0, 1}.

Theorem:
1. Q, U, C and S are always consistent in any WFS.

2. Any logical paradox can only arise if agents reason using
Q, U, C, S and I in a WFS where I actually fails.

Universality of QT does not threaten logic!
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Q, U, C, S and I in a WFS where I actually fails.

Universality of QT does not threaten logic!



Quantum circuit framework for WFS
————————————————————————————————



What is the channel MB?

MB

|ψ⟩S |0⟩B

Bob meas S in
{|0⟩ , |1⟩} basis ??

S B

BS

|ψ⟩S = 1√
2
(|0⟩+ |1⟩)S

Unitary: 1√
2
(|00⟩+ |11⟩)SB

Projection: |00⟩, |11⟩, mixture

Explicit description of MB

MB
unitary

ΠB
xB

BS

|ψ⟩S |0⟩BxB ∈ {0, 1}

BS

b ∈ {⊥, 0, 1}

BS

Setting-dependent projectors

ΠB
xB=0 = ISB (trivial outcome b =⊥)

ΠB
xB=1 = {|00⟩ ⟨00|SB , |11⟩ ⟨11|SB} (non-trivial b ∈ {0, 1})
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Generalises to arbitrary WFS over N agents A1, ...,AN , performing
arbitrary quantum operations on each other’s labs/memories

time

ρS1,...,Sm

|0⟩M1

|0⟩MN

·
·
·

S1

Sm

·
·
·

M1

MA1
unitary

ΠA1
x1

x1 ∈ {0, 1}
a1 ∈ ⊥ ∪ O1

MA1

S1

Sm

·
·
·

M1

S1

Sm

·
·
·

M1

E1

S1

Sm

·
·
·

M1

. . .

MN

S1

Sm

·
·
·

M1

·
·
·

MAN
unitary

Π
AN
xN

xN ∈ {0, 1}
aN ∈ ⊥ ∪ ON

MAN

S1

Sm

·
·

·
·
·

·

M1

MN

S1

Sm

·
·

·
·
·

·

M1

MN

EN

·
·
·

An augmented circuit for a general WFS



Completeness, logical and causal consistency

Theorem (informal): An augmented circuit for a WFS

(1) Encodes all predictions that can made in that WFS
(2) Never leads to contradictory predictions
(3) Predictions only depend on settings in past light cone

Further...

• Unifying framework for previous responses

• Reasoning rules for quantum agents

• Allows subjective H-cuts, non-absolute measurement events
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Emergence of objective measurement events
————————————————————————————————



How do objective predictions emerge in standard
quantum expts when there can be subjectivity in WFS?

(Causal) structural distinction

MB

MW

S B

BS

WFS (quantum control of full lab)

MB

MW

S B

BS

Standard quantum expt

• Theorem: Predictions in standard q. expts are setting-indep

• Objective probabilities, independent of H-cuts emerge
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Summary and conclusions
————————————————————————————————



FR: Logical paradox in a particular WF scenario with q. agents

Our work: Quantum circuit framework that ensures logical and
causal consistency in any WF scenario with q. agents

• Resolution: account for H-cut (unitary vs projection channel)

• Absolute notion of mmt events not necessary for sound logic

• Objectivity/absoluteness emerges in standard q. expts

• Framework interpretation independent (just like q. circuits)

Take home: Quantum agents in WFS can always reason
consistently without giving up quantum theory or classical logic, as

long as they don’t ignore non-trivial dependences on H-cuts.
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Outlook
————————————————————————————————



• WFS and measurement problem beyond quantum theory
(Ormrod, Vilasini, Barrett 2023: QPL Talk on Wednesday)

• Relation to logical contextuality, semantic paradoxes
(Nurgalieva, Vilasini 2023: QPL Talk on Thursday)

• Quantum causal models and relativistic causality in WFS
(Ongoing work)

• Broader research program on WFS theory and experiments,
other no-go theorems

THANK YOU!
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