Locally Tomographic Shadows

Alex Wilce Susquehanna University

Joint work with Howard Barnum and Matthew Graydon

QPL, Paris July 19, 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Overview

Local Tomography (LT) posits that the state of a composite system AB, is determined by the joint probabilities it assigns to separate, "local" measurements on A and B.

Classical probability theory and *complex* QM satisfy LT, but Real QM ($\mathbb{R}QM$) does not.

This is clear on dimensional grounds, but let's look a bit deeper.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let **H**, **K** be (here, f.d.) real Hilbert spaces. Write $\mathcal{L}_s(\mathbf{H})$, $\mathcal{L}_a(\mathbf{H})$ for the spaces of symmetric, resp. anti-symmetric operators on **H**, and similarly for **K**. Let

$$\mathcal{L}_{ss} := \mathcal{L}_s(\mathsf{H}) \otimes \mathcal{L}_s(\mathsf{K}) \ \text{ and } \mathcal{L}_{aa} := \mathcal{L}_a(\mathsf{H}) \otimes \mathcal{L}_a(\mathsf{K})$$

Then

$$\mathcal{L}_{s}(\mathsf{H}\otimes\mathsf{K})=\mathcal{L}_{ss}\oplus\mathcal{L}_{aa}$$

NB: and orthogonal decomposition w.r.t. trace inner product.

So if ρ 's a density operator on $\mathbf{H} \otimes \mathbf{K}$,

$$\rho = \rho_{ss} + \rho_{aa}$$

with $\rho_{ss} \in \mathcal{L}_{ss}$ and $\rho_{aa} \in \mathcal{L}_{aa}$.

Given effects $a \in \mathcal{L}_s(\mathbf{H})$ and $b \in \mathcal{L}_s(\mathbf{K})$, $a \otimes b \in \mathcal{L}_{ss}$, so $Tr((a \otimes b)\rho_{aa}) = 0$. Hence,

$$\operatorname{Tr}((a \otimes b)\rho) = \operatorname{Tr}((a \otimes b)\rho_{ss}).$$

States with the same \mathcal{L}_{ss} component are *locally indistinguishable* in real QM.

・ロト・日本・ヨト・ヨー うへの

Yes!

Yes! — and not just for $\mathbb{R}QM$, but non-LT probabilistic theories (GPTs) very generally.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Yes! — and not just for $\mathbb{R}\mathbf{QM}$, but non-LT probabilistic theories (GPTs) very generally.

We call the resulting theory the *locally tomographic shadow* of the original one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Yes! — and not just for $\mathbb{R}QM$, but non-LT probabilistic theories (GPTs) very generally.

We call the resulting theory the *locally tomographic shadow* of the original one.

First, we need to say what we mean by a probabilistic theory.

- 1. Probabilistic Theories revisited
- 2. Construction of the LT shadow

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 3. The shadow of RQM $\,$
- 4. Some questions

I. Probabilistic Theories Revisited

For our purposes, a **probabilistic model** is pair (\mathbb{V}, u) where

- $\mathbb V$ is an ordered real vector space, with positive cone $\mathbb V_+;$
- *u* is a strictly positive linear functional on *V*, referred to as the *unit effect* of the model.

For our purposes, a **probabilistic model** is pair (\mathbb{V}, u) where

- \mathbb{V} is an ordered real vector space, with positive cone \mathbb{V}_+ ;
- *u* is a strictly positive linear functional on *V*, referred to as the *unit effect* of the model.

States are elements $\alpha \in \mathbb{V}_+$ with $u(\alpha) = 1$.

Effects (measurement outcomes) are elements $a \in \mathbb{V}^*$ with $0 \le a \le u$: $a(\alpha)$ is the probability of *a*'s of occurring in state α .

Processes from (\mathbb{V}_1, u_1) to (\mathbb{V}_2, u_2) are positive bilinear mappings $\phi : \mathbb{V}_1 \to \mathbb{V}_2$ with $u_2(\phi(\alpha)) \leq u_1(\alpha)$ for all $\alpha \in \mathbb{V}_{1+}$.

- ロ ト - 4 回 ト - 4 □

A non-signaling composite of (\mathbb{V}_1, u_1) and (\mathbb{V}_2, u_2) is a model (\mathbb{V}, u) plus positive linear mappings

$$m: \mathbb{V}_1 \times \mathbb{V}_2 \to \mathbb{V}$$
$$\pi: \mathbb{V}_1^* \times \mathbb{V}_2^* \to \mathbb{V}^*$$

such that

(i)
$$\pi(a, b)m(\alpha, \beta) = a(\alpha)b(\beta)$$

(ii) $\pi(u_1, u_2) = u$.

Note *m* defines a linear mapping

$$m: \mathbb{V}_1 \otimes \mathbb{V}_2 \to \mathbb{V},$$

and π dualizes to give another,

$$\pi^*: \mathbb{V} \to \mathcal{L}^2(\mathbb{V}_1^*, \mathbb{V}_2^*)^* = \mathbb{V}_1 \otimes \mathbb{V}_2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The composite (\mathbb{V}, u) is locally tomographic (LT) iff product effects separate states — equivalently, $\mathbb{V} \simeq \mathbb{V}_1 \otimes \mathbb{V}_2$.

Two extremal cases:

- The minimal tensor product $\mathbb{V}_1 \otimes_{min} \mathbb{V}_2$: cone generated by separable states.
- The maximal tensor product V₁ ⊗_{max} V₂: cone generated by tensors positive on product effects.

The definition of a composite just says we have positive linear mappings

$$\mathbb{V}_1 \otimes_{\mathsf{min}} \mathbb{V}_2 \xrightarrow{m} \mathbb{V} \xrightarrow{\pi^*} \mathbb{V}_1 \otimes_{\mathsf{max}} \mathbb{V}_2$$

composing to the identity.

Write **Prob** for the category of probabilistic models and processes. A probabilistic theory is a functor $\mathbb{V} : \mathcal{C} \to \mathbf{Prob}$, where

- C is a symmetric monoidal category ("actual" physical systems and processes, or mathematical proxies for these)
- $\mathbb{V}(AB)$ is a non-signaling composite of $\mathbb{V}(A)$ and $\mathbb{V}(B)$

•
$$\mathbb{V}(I) = \mathbb{R}$$
.

We assume \mathbb{V} is *injective on objects*, which makes $\mathbb{V}(\mathcal{C})$ a subcategory of **Prob**, with a well-defined monoidal structure given (on objects) by

 $\mathbb{V}(A), \mathbb{V}(B) \mapsto \mathbb{V}(AB).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

II. Constructing the LT Shadow

We need to assume that systems preferred decompositions into local pieces, so replace C with its strictification C^* :

We need to assume that systems preferred decompositions into local pieces, so replace C with its strictification C^* :

objects are finite lists A
 ⁱ = (A₁,..., A_n) of objects A_i ∈ C
 (A_i ≠ I) standing for

$$\Pi \vec{A} := \Pi_{i=1}^n A_i := A_1(A_2(\cdots(A_{n-1}A_n)\cdots))$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

in $\mathcal C$ with the indicated decomposition.

We need to assume that systems preferred decompositions into local pieces, so replace C with its strictification C^* :

objects are finite lists A
 ⁱ = (A₁, ..., A_n) of objects A_i ∈ C
 (A_i ≠ I) standing for

$$\Pi \vec{A} := \Pi_{i=1}^n A_i := A_1(A_2(\cdots(A_{n-1}A_n)\cdots))$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

in $\mathcal C$ with the indicated decomposition.

• Morphisms from \vec{A} to \vec{B} are morphisms $\Pi \vec{A} \to \Pi \vec{B}$ in C.

We need to assume that systems preferred decompositions into local pieces, so replace C with its strictification C^* :

objects are finite lists A
 ⁱ = (A₁, ..., A_n) of objects A_i ∈ C
 (A_i ≠ I) standing for

$$\Pi \vec{A} := \Pi_{i=1}^n A_i := A_1(A_2(\cdots(A_{n-1}A_n)\cdots))$$

in $\mathcal C$ with the indicated decomposition.

• Morphisms from \vec{A} to \vec{B} are morphisms $\Pi \vec{A} \to \Pi \vec{B}$ in C.

This is a strict symmetric monoidal category under concatenation with the empty string is the unit.

Suppose that $\vec{A} := (A_1, ..., A_n) \in C^*$ with composite $\Pi \vec{A} := A \in C$: there's a positive linear mapping

$$\mathsf{LT}_{\vec{A}} := \pi^*_{\vec{A}} : \mathbb{V}(A) \longrightarrow \mathcal{L}^n(\mathbb{V}^*(A_1), ..., \mathbb{V}^*(A_n))$$

restricting $\omega \in \mathbb{V}(A)$ to product effects:

$$\widetilde{\omega}(a_1,...,a_n) := \pi^*_{\vec{A}}(\omega)(a_1,...,a_n) = (a_1 \otimes \cdots \otimes a_n)(\omega)$$

for all $(a_1,...,a_n) \in \mathbb{V}^*(A_1) \times \cdots \times \mathbb{V}^*(A_n).$

Suppose that $\vec{A} := (A_1, ..., A_n) \in C^*$ with composite $\Pi \vec{A} := A \in C$: there's a positive linear mapping

$$\mathsf{LT}_{\vec{A}} := \pi^*_{\vec{A}} : \mathbb{V}(A) \longrightarrow \mathcal{L}^n(\mathbb{V}^*(A_1), ..., \mathbb{V}^*(A_n))$$

restricting $\omega \in \mathbb{V}(A)$ to product effects:

$$\widetilde{\omega}(a_1,...,a_n) := \pi^*_{\vec{A}}(\omega)(a_1,...,a_n) = (a_1 \otimes \cdots \otimes a_n)(\omega)$$

for all $(a_1,...,a_n) \in \mathbb{V}^*(A_1) \times \cdots \times \mathbb{V}^*(A_n).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We call $\widetilde{\omega}$ the *local shadow* of ω

Let $\widetilde{\mathbb{V}}(\vec{A})$ be the space $\bigotimes_{i} \mathbb{V}(A_{i})$, ordered by the cone

$$\widetilde{\mathbb{V}}(\vec{A})_{+} := \mathsf{LT}_{\vec{A}}(\mathbb{V}(\Pi A)_{+})$$

of local shadows of elements of $\mathbb{V}(\Pi \vec{A})_+$.

With $\widetilde{u}_{\vec{A}} = u_{A_1} \otimes \cdots \otimes u_{A_n}$, $(\widetilde{\mathbb{V}}(\vec{A}), \widetilde{u}_{\vec{A}})$ is a model, the *locally* tomographic shadow of $(\mathbb{V}(A), u_A)$ with respect to the given decomposition.

Notation: Write

$$\widetilde{\mathbb{V}}(\vec{A}) \boxtimes \widetilde{\mathbb{V}}(\vec{B}) := \widetilde{\mathbb{V}}(\vec{A}\vec{B}).$$

In particular, for $A, B \in C$,

$$\mathbb{V}(A) \boxtimes \mathbb{V}(B) = \widetilde{\mathbb{V}}(A, B) = \mathbb{V}(A) \otimes \mathbb{V}(B),$$

but ordered by the cone $\widetilde{\mathbb{V}}(A, B)$ generated by local shadows $\widetilde{\omega}$ of states $\omega \in \mathbb{V}(AB)$.

The effect cone of $\widetilde{\mathbb{V}}(A_1, ..., A_n)$ has a nice characterization:

Lemma:
$$\widetilde{\mathbb{V}}(A_1, ..., A_n)^*_+ \simeq \mathbb{V}^*(\Pi_i A_i)_+ \cap (\bigotimes_i \mathbb{V}^*(A_i)).$$

In the bipartite case:

 $(\mathbb{V}(A)\boxtimes\mathbb{V}(B))^*_+\simeq\mathbb{V}(AB)^*_+\cap(\mathbb{V}(A)^*\otimes\mathbb{V}(B)^*).$

What about processes?

Let $A = \Pi \vec{A}$ and $B = \Pi \vec{B}$ where $\vec{A} = (A_1, ..., A_n)$ and $\vec{B} = (B_1, ..., B_k)$. The following is routine:

Lemma: Let $\Phi : \mathbb{V}(\Pi \vec{A}) \to \mathbb{V}(\Pi \vec{B})$ be a positive linear mapping. The following are equivalent:

- (a) Φ maps $Ker(LT_{\vec{A}})$ into $Ker(LT_{\vec{B}})$.
- (b) If ω, ω' ∈ V(A) are locally indistinguishable, so are Φ(ω), Φ(ω') in V(B).
- (c) There exists a linear mapping $\phi : \bigotimes_i \mathbb{V}(A_i) \to \bigotimes_j \mathbb{V}(B_j)$ such that $LT_{\vec{B}} \circ \Phi = \phi \circ LT_{\vec{A}}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A positive linear mapping $\Phi : \mathbb{V}(A) \to \mathbb{V}(B)$ satisfying these conditions is *locally positive* (with respect to the specified decompositions).

The linear mapping ϕ in part (c) is then uniquely determined. We call it the *shadow* of Φ , writing $\phi = LT(\Phi)$.

Lemma: If $\Phi : \mathbb{V}(A) \to \mathbb{V}(B)$ is locally positive, then $\phi = LT(\Phi)$ is positive as a mapping $\widetilde{\mathbb{V}}(A_1, ..., A_m) \to \widetilde{\mathbb{V}}(B_1, ..., B_n)$.

Locally positive maps are reasonably abundant, but do exclude some important morphisms in $\mathbb{R}QM$.

Examples:

(a) If σ and α are swap and associator morphisms in C, $\mathbb{V}(\sigma)$ is locally positive, but $\mathbb{V}(\alpha)$ need not be.

(b) if α is a state on $A = A_1 \otimes \cdots \otimes A_n$, then the corresponding mapping $\alpha : \mathbb{R} = \mathbb{V}(I) \to \mathbb{V}(A)$ given by $\alpha(1) = \alpha$ is trivially locally positive (the kernel of LT_I is trivial). But an effect $a : \mathbb{V}(A) \to \mathbb{R}$ need not be locally positive.

Call a morphism $\Pi \vec{A} \xrightarrow{\phi} \Pi \vec{B}$ *local* iff $\mathbb{V}(\phi) : \mathbb{V}(\Pi \vec{A}) \to \mathbb{V}(\Pi \vec{B})$ is locally positive (relative to the preferred factorizations of A and B).

Write $Loc(\mathcal{C}, \mathbb{V})$ for the monoidal subcategory (it is one) of \mathcal{C}^* having the same objects but only local morphisms.

Lemma: $\widetilde{\mathbb{V}}$: $Loc(\mathcal{C}, \mathbb{V}) \to \mathbf{Prob}$ is a locally tomographic probabilistic theory — the locally tomographic shadow of \mathbb{V} .

IV. The Shadow of Real Quantum Theory

For simplicity, let $\mathbf{H} = \mathbf{K}$, writing \mathcal{L}_s for $\mathcal{L}_s(\mathbf{H})$. Recall

$$\mathcal{L}_{s}(\mathsf{H}\otimes\mathsf{H})=\mathcal{L}_{ss}\oplus\mathcal{L}_{aa},$$

where

$$\mathcal{L}_{ss} = \mathcal{L}_{s}(\mathbf{H}) \otimes \mathcal{L}_{s}(\mathbf{K}) \text{ and } \mathcal{L}_{aa} = \mathcal{L}_{a}(\mathbf{H}) \otimes \mathcal{L}_{a}(\mathbf{K}).$$

Then LT is just the projection onto $\mathcal{L}_{\textit{ss}}.$ This is just Sym \otimes Sym, where

$$\operatorname{Sym}(a) := \frac{1}{2}(a + a^t).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

But Sym \otimes Sym is not positive!

So $(\mathcal{L}_s \boxtimes \mathcal{L}_s)_+$ is strictly larger than $\mathcal{L}_{ss} \cap \mathcal{L}_+$.

A priori we have now have

 $(\mathcal{L}_s \otimes_{\min} \mathcal{L}_s)_+ \leq \mathcal{L}_{ss} \cap \mathcal{L}_+ < (\mathcal{L}_s \boxtimes \mathcal{L}_s)_+ \leq (\mathcal{L}_s \otimes_{\max} \mathcal{L}_s)_+.$

In fact,

Theorem: All of these embeddings are strict.

(The hard one is the last. Uses the existence of unextendable product bases.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The geometry of the state space in $LT(\mathbb{R}QM)$ is nontrivial. The following restates a result of Chiribella, D'Ariano and Perinotti (2009):

Theorem: If α , β are states density operators on **H** \otimes **K** with α pure, then

$$LT(\alpha) = LT(\beta) \Rightarrow \alpha = \beta.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So the the LT map never identifies a pure state with any other state. Only nontrivially mixed states get "pasted togther".

IV. Conclusions and questions

Compact Closure The effect $\epsilon : a \otimes b \mapsto Tr(ab^t)$ is not local. Hence, $LT(\mathbb{R}QM)$ does not inherit the compact structure of $\mathbb{R}QM$. If C is compact closed, when *is* $LT(C, \mathbb{V})$ compact closed?

LT and Complex QM How does LT interact with the restriction-of-scalars and complexification functors $(-)_{\mathbb{R}} : \mathbb{C}QM \to \mathbb{R}QM, \ (-)^{\mathbb{C}} : \mathbb{R}QM \to \mathbb{C}QM?$

The Shadow of InvQM In (BGW, Quantum 2020), we constructed a non-LT theory **InvQM**, containing finite-dimensional real and quaternionic QM and also a relative of complex QM. What is LT(**InvQM**)?

Non-deterministic shadows Not all processes in $\mathbb{R}\mathbf{Q}\mathbf{M}$ are local. Suppose Alice and Bob agree that their joint state is ω . This is consistent with the true global state being any $\mu \in \mathrm{LT}_{A,B}^{-1}(\omega)$. If μ evolves under a (global) process $\phi : \mathbb{V}(AB) \to \mathbb{V}(CD)$, the result will be one of the states in $\phi(\mathrm{LT}_{A,B}^{-1}(\omega))$. If ϕ is not local, these needn't lie in a single fibre of $\mathrm{LT}_{C,D}$: parties C and D might observe any of the different states in $\mathrm{LT}_{C,D}(\phi(\mathrm{LT}_{A,B}^{-1}(\omega)))$, giving the impression that ϕ acted indeterministically. How should one quantify this extra layer of uncertainty?