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Overview

Local Tomography (LT) posits that the state of a composite
system AB, is determined by the joint probabilities it assigns to
separate, “local” measurements on A and B.

Classical probability theory and complex QM satisfy LT, but Real
QM (RQM) does not.

This is clear on dimensional grounds, but let’s look a bit deeper.



Let H, K be (here, f.d.) real Hilbert spaces. Write Ls(H), La(H)
for the spaces of symmetric, resp. anti-symmetric operators on H,
and similarly for K. Let

Lss := Ls(H)⊗ Ls(K) and Laa := La(H)⊗ La(K)

Then
Ls(H⊗K) = Lss ⊕ Laa

NB: and orthogonal decomposition w.r.t. trace inner product.



So if ρ’s a density operator on H⊗K,

ρ = ρss + ρaa

with ρss ∈ Lss and ρaa ∈ Laa.

Given effects a ∈ Ls(H) and b ∈ Ls(K), a⊗ b ∈ Lss , so
Tr((a⊗ b)ρaa) = 0. Hence,

Tr((a⊗ b)ρ) = Tr((a⊗ b)ρss).

States with the same Lss component are locally indistinguishable
in real QM.



Question: Can we just “factor out” the non-local degrees of
freedom — here, Laa — to obtain a LT theory?

Yes! — and not just for RQM, but non-LT probabilistic theories
(GPTs) very generally.

We call the resulting theory the locally tomographic shadow of the
original one.

First, we need to say what we mean by a probabilistic theory.
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I. Probabilistic Theories Revisited



For our purposes, a probabilistic model is pair (V, u) where

• V is an ordered real vector space, with positive cone V+;

• u is a strictly positive linear functional on V, referred to as the
unit effect of the model.

States are elements α ∈ V+ with u(α) = 1.

Effects (measurement outcomes) are elements a ∈ V∗ with
0 ≤ a ≤ u: a(α) is the probability of a’s of occurring in state α.

Processes from (V1, u1) to (V2, u2) are positive bilinear mappings
ϕ : V1 → V2 with u2(ϕ(α)) ≤ u1(α) for all α ∈ V1+.
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A non-signaling composite of (V1, u1) and (V2, u2) is a model
(V, u) plus positive linear mappings

m : V1 × V2 → V

π : V∗
1 × V∗

2 → V∗

such that
(i) π(a, b)m(α, β) = a(α)b(β)
(ii) π(u1, u2) = u.

Note m defines a linear mapping

m : V1 ⊗ V2 → V,

and π dualizes to give another,

π∗ : V → L2(V∗
1,V∗

2)
∗ = V1 ⊗ V2.



The composite (V, u) is locally tomographic (LT) iff product
effects separate states — equivalently, V ≃ V1 ⊗ V2.

Two extremal cases:

• The minimal tensor product V1 ⊗min V2: cone generated by
separable states.

• The maximal tensor product V1 ⊗max V2: cone generated by
tensors positive on product effects.

The definition of a composite just says we have positive linear
mappings

V1 ⊗min V2
m−→ V π∗

−→ V1 ⊗max V2

composing to the identity.



Write Prob for the category of probabilistic models and processes.
A probabilistic theory is a functor V : C → Prob, where

• C is a symmetric monoidal category (“actual” physical
systems and processes, or mathematical proxies for these)

• V(AB) is a non-signaling composite of V(A) and V(B)

• V(I ) = R.

We assume V is injective on objects, which makes V(C) a
subcategory of Prob, with a well-defined monoidal structure given
(on objects) by

V(A),V(B) 7→ V(AB).



II. Constructing the LT Shadow



Even if (C,V) is not LT, we can ask what the world it describes
“looks like” to local agents.

We need to assume that systems preferred decompositions into
local pieces, so replace C with its strictification C∗:

• objects are finite lists A⃗ = (A1, ...,An) of objects Ai ∈ C
(Ai ̸= I ) standing for

ΠA⃗ := Πn
i=1Ai := A1(A2(· · · (An−1An) · · · )

in C with the indicated decomposition.

• Morphisms from A⃗ to B⃗ are morphisms ΠA⃗ → ΠB⃗ in C.

This is a strict symmetric monoidal category under concatenation
with the empty string is the unit.
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Suppose that A⃗ := (A1, ...,An) ∈ C∗ with composite ΠA⃗ := A ∈ C:
there’s a positive linear mapping

LT
A⃗
:= π∗

A⃗
: V(A) −→ Ln(V∗(A1), ...,V∗(An))

restricting ω ∈ V(A) to product effects:

ω̃(a1, ..., an) := π∗
A⃗
(ω)(a1, ..., an) = (a1 ⊗ · · · ⊗ an)(ω)

for all (a1, ..., an) ∈ V∗(A1)× · · · × V∗(An).

We call ω̃ the local shadow of ω
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Let Ṽ(A⃗) be the space
⊗

i V(Ai ), ordered by the cone

Ṽ(A⃗)+ := LT
A⃗
(V(ΠA)+)

of local shadows of elements of V(ΠA⃗)+.

With ũ
A⃗
= uA1 ⊗ · · · ⊗ uAn , (Ṽ(A⃗), ũA⃗) is a model, the locally

tomographic shadow of (V(A), uA) with respect to the given
decomposition.



Notation: Write

Ṽ(A⃗)⊠ Ṽ(B⃗) := Ṽ(A⃗B⃗).

In particular, for A,B ∈ C,

V(A)⊠ V(B) = Ṽ(A,B) = V(A)⊗ V(B),

but ordered by the cone Ṽ(A,B) generated by local shadows ω̃ of
states ω ∈ V(AB).

The effect cone of Ṽ(A1, ...,An) has a nice characterization:

Lemma: Ṽ(A1, ...,An)
∗
+ ≃ V∗(ΠiAi )+ ∩ (

⊗
i V∗(Ai )).

In the bipartite case:

(V(A)⊠ V(B))∗+ ≃ V(AB)∗+ ∩ (V(A)∗ ⊗ V(B)∗).



What about processes?

Let A = ΠA⃗ and B = ΠB⃗ where A⃗ = (A1, ...,An) and
B⃗ = (B1, ...,Bk). The following is routine:

Lemma: Let Φ : V(ΠA⃗) → V(ΠB⃗) be a positive linear mapping.
The following are equivalent:
(a) Φ maps Ker(LT

A⃗
) into Ker(LT

B⃗
).

(b) If ω, ω′ ∈ V(A) are locally indistinguishable, so are
Φ(ω),Φ(ω′) in V(B).

(c) There exists a linear mapping ϕ :
⊗

i V(Ai ) →
⊗

j V(Bj)
such that LT

B⃗
◦ Φ = ϕ ◦ LT

A⃗



A positive linear mapping Φ : V(A) → V(B) satisfying these
conditions is locally positive (with respect to the specified
decompositions).

The linear mapping ϕ in part (c) is then uniquely determined. We
call it the shadow of Φ, writing ϕ = LT(Φ).

Lemma: If Φ : V(A) → V(B) is locally positive, then ϕ = LT(Φ)
is positive as a mapping Ṽ(A1, ...,Am) → Ṽ(B1, ...,Bn).



Locally positive maps are reasonably abundant, but do exclude
some important morphisms in RQM.

Examples:

(a) If σ and α are swap and associator morphisms in C, V(σ) is
locally positive, but V(α) need not be.

(b) if α is a state on A = A1 ⊗ · · · ⊗ An, then the corresponding
mapping α : R = V(I ) → V(A) given by α(1) = α is trivially
locally positive (the kernel of LTI is trivial). But an effect
a : V(A) → R need not be locally positive.



.

Call a morphism ΠA⃗
ϕ−→ ΠB⃗ local iff V(ϕ) : V(ΠA⃗) → V(ΠB⃗) is

locally positive (relative to the preferred factorizations of A and B).

Write Loc(C,V) for the monoidal subcategory (it is one) of C∗

having the same objects but only local morphisms.

Lemma: Ṽ : Loc(C,V) → Prob is a locally tomographic
probabilistic theory — the locally tomographic shadow of V.



IV. The Shadow of Real Quantum Theory



For simplicity, let H = K, writing Ls for Ls(H). Recall

Ls(H⊗H) = Lss ⊕ Laa,

where

Lss = Ls(H)⊗ Ls(K) and Laa = La(H)⊗ La(K).

Then LT is just the projection onto Lss . This is just Sym⊗ Sym,
where

Sym(a) := 1
2(a+ at).

But Sym⊗ Sym is not positive!



So (Ls ⊠ Ls)+ is strictly larger than Lss ∩ L+.

A priori we have now have

(Ls ⊗min Ls)+ ≤ Lss ∩ L+ < (Ls ⊠ Ls)+ ≤ (Ls ⊗max Ls)+.

In fact,

Theorem: All of these embeddings are strict.

(The hard one is the last. Uses the existence of unextendable
product bases.)



The geometry of the state space in LT(RQM) is nontrivial. The
following restates a result of Chiribella, D’Ariano and Perinotti
(2009):

Theorem: If α, β are states density operators on H⊗K with α
pure, then

LT(α) = LT(β) ⇒ α = β.

So the the LT map never identifies a pure state with any other
state. Only nontrivially mixed states get “pasted togther”.



IV. Conclusions and questions



Compact Closure The effect ϵ : a⊗ b 7→ Tr(abt) is not local.
Hence, LT(RQM) does not inherit the compact structure of
RQM. If C is compact closed, when is LT(C,V) compact closed?

LT and Complex QM How does LT interact with the
restriction-of-scalars and complexification functors
(−)R : CQM → RQM, (−)C : RQM → CQM?

The Shadow of InvQM In (BGW, Quantum 2020), we
constructed a non-LT theory InvQM, containing finite-dimensional
real and quaternionic QM and also a relative of complex QM.
What is LT(InvQM)?



Non-deterministic shadows Not all processes in RQM are local.
Suppose Alice and Bob agree that their joint state is ω. This is
consistent with the true global state being any µ ∈ LT−1

A,B(ω). If µ
evolves under a (global) process ϕ : V(AB) → V(CD), the result
will be one of the states in ϕ(LT−1

A,B(ω)). If ϕ is not local, these
needn’t lie in a single fibre of LTC ,D : parties C and D might
observe any of the different states in LTC ,D(ϕ(LT

−1
A,B(ω))), giving

the impression that ϕ acted indeterministically. How should one
quantify this extra layer of uncertainty?


