Locally Tomographic Shadows

Alex Wilce
Susquehanna University
Joint work with Howard Barnum and Matthew Graydon

QPL, Paris
July 19, 2023

Overview

Local Tomography (LT) posits that the state of a composite system $A B$, is determined by the joint probabilities it assigns to separate, "local" measurements on A and B.

Classical probability theory and complex QM satisfy LT, but Real QM ($\mathbb{R} \mathbf{Q M}$) does not.

This is clear on dimensional grounds, but let's look a bit deeper.

Let \mathbf{H}, \mathbf{K} be (here, f.d.) real Hilbert spaces. Write $\mathcal{L}_{s}(\mathbf{H}), \mathcal{L}_{a}(\mathbf{H})$ for the spaces of symmetric, resp. anti-symmetric operators on \mathbf{H}, and similarly for \mathbf{K}. Let

$$
\mathcal{L}_{s s}:=\mathcal{L}_{s}(\mathbf{H}) \otimes \mathcal{L}_{s}(\mathbf{K}) \text { and } \mathcal{L}_{a a}:=\mathcal{L}_{a}(\mathbf{H}) \otimes \mathcal{L}_{a}(\mathbf{K})
$$

Then

$$
\mathcal{L}_{s}(\mathbf{H} \otimes \mathbf{K})=\mathcal{L}_{s s} \oplus \mathcal{L}_{\text {aa }}
$$

NB: and orthogonal decomposition w.r.t. trace inner product.

So if ρ 's a density operator on $\mathbf{H} \otimes \mathbf{K}$,

$$
\rho=\rho_{s s}+\rho_{a a}
$$

with $\rho_{s s} \in \mathcal{L}_{s s}$ and $\rho_{a a} \in \mathcal{L}_{a a}$.

Given effects $a \in \mathcal{L}_{s}(\mathbf{H})$ and $b \in \mathcal{L}_{s}(\mathbf{K}), a \otimes b \in \mathcal{L}_{s s}$, so $\operatorname{Tr}\left((a \otimes b) \rho_{a a}\right)=0$. Hence,

$$
\operatorname{Tr}((a \otimes b) \rho)=\operatorname{Tr}\left((a \otimes b) \rho_{s s}\right)
$$

States with the same $\mathcal{L}_{s s}$ component are locally indistinguishable in real QM.

Question: Can we just "factor out" the non-local degrees of freedom - here, $\mathcal{L}_{\text {aa }}$ - to obtain a LT theory?

Question: Can we just "factor out" the non-local degrees of freedom - here, $\mathcal{L}_{\text {aa }}$ - to obtain a LT theory?

Yes!

Question: Can we just "factor out" the non-local degrees of freedom - here, $\mathcal{L}_{\text {aa }}$ - to obtain a LT theory?

Yes! — and not just for $\mathbb{R} \mathbf{Q M}$, but non-LT probabilistic theories (GPTs) very generally.

Question: Can we just "factor out" the non-local degrees of freedom - here, $\mathcal{L}_{\text {aa }}$ - to obtain a LT theory?

Yes! — and not just for $\mathbb{R} \mathbf{Q M}$, but non-LT probabilistic theories (GPTs) very generally.

We call the resulting theory the locally tomographic shadow of the original one.

Question: Can we just "factor out" the non-local degrees of freedom - here, $\mathcal{L}_{\text {aa }}$ - to obtain a LT theory?

Yes! — and not just for $\mathbb{R} \mathbf{Q M}$, but non-LT probabilistic theories (GPTs) very generally.

We call the resulting theory the locally tomographic shadow of the original one.

First, we need to say what we mean by a probabilistic theory.

Plan

1. Probabilistic Theories revisited
2. Construction of the LT shadow
3. The shadow of RQM
4. Some questions
I. Probabilistic Theories Revisited

For our purposes, a probabilistic model is pair (\mathbb{V}, u) where

- \mathbb{V} is an ordered real vector space, with positive cone \mathbb{V}_{+};
- u is a strictly positive linear functional on \mathbb{V}, referred to as the unit effect of the model.

For our purposes, a probabilistic model is pair (\mathbb{V}, u) where

- \mathbb{V} is an ordered real vector space, with positive cone \mathbb{V}_{+};
- u is a strictly positive linear functional on \mathbb{V}, referred to as the unit effect of the model.

States are elements $\alpha \in \mathbb{V}_{+}$with $u(\alpha)=1$.
Effects (measurement outcomes) are elements $a \in \mathbb{V}^{*}$ with $0 \leq a \leq u: a(\alpha)$ is the probability of a's of occurring in state α.

Processes from $\left(\mathbb{V}_{1}, u_{1}\right)$ to $\left(\mathbb{V}_{2}, u_{2}\right)$ are positive bilinear mappings $\phi: \mathbb{V}_{1} \rightarrow \mathbb{V}_{2}$ with $u_{2}(\phi(\alpha)) \leq u_{1}(\alpha)$ for all $\alpha \in \mathbb{V}_{1+}$.

A non-signaling composite of $\left(\mathbb{V}_{1}, u_{1}\right)$ and $\left(\mathbb{V}_{2}, u_{2}\right)$ is a model (\mathbb{V}, u) plus positive linear mappings

$$
\begin{aligned}
& m: \mathbb{V}_{1} \times \mathbb{V}_{2} \rightarrow \mathbb{V} \\
& \pi: \mathbb{V}_{1}^{*} \times \mathbb{V}_{2}^{*} \rightarrow \mathbb{V}^{*}
\end{aligned}
$$

such that
(i) $\pi(a, b) m(\alpha, \beta)=a(\alpha) b(\beta)$
(ii) $\pi\left(u_{1}, u_{2}\right)=u$.

Note m defines a linear mapping

$$
m: \mathbb{V}_{1} \otimes \mathbb{V}_{2} \rightarrow \mathbb{V}
$$

and π dualizes to give another,

$$
\pi^{*}: \mathbb{V} \rightarrow \mathcal{L}^{2}\left(\mathbb{V}_{1}^{*}, \mathbb{V}_{2}^{*}\right)^{*}=\mathbb{V}_{1} \otimes \mathbb{V}_{2}
$$

The composite (\mathbb{V}, u) is locally tomographic (LT) iff product effects separate states - equivalently, $\mathbb{V} \simeq \mathbb{V}_{1} \otimes \mathbb{V}_{2}$.

Two extremal cases:

- The minimal tensor product $\mathbb{V}_{1} \otimes_{\min } \mathbb{V}_{2}$: cone generated by separable states.
- The maximal tensor product $\mathbb{V}_{1} \otimes \max \mathbb{V}_{2}$: cone generated by tensors positive on product effects.

The definition of a composite just says we have positive linear mappings

$$
\mathbb{V}_{1} \otimes_{\min } \mathbb{V}_{2} \xrightarrow{m} \mathbb{V} \xrightarrow{\pi^{*}} \mathbb{V}_{1} \otimes \max \mathbb{V}_{2}
$$

composing to the identity.

Write Prob for the category of probabilistic models and processes.
A probabilistic theory is a functor $\mathbb{V}: \mathcal{C} \rightarrow \mathbf{P r o b}$, where

- \mathcal{C} is a symmetric monoidal category ("actual" physical systems and processes, or mathematical proxies for these)
- $\mathbb{V}(A B)$ is a non-signaling composite of $\mathbb{V}(A)$ and $\mathbb{V}(B)$
- $\mathbb{V}(I)=\mathbb{R}$.

We assume \mathbb{V} is injective on objects, which makes $\mathbb{V}(\mathcal{C})$ a subcategory of Prob, with a well-defined monoidal structure given (on objects) by

$$
\mathbb{V}(A), \mathbb{V}(B) \mapsto \mathbb{V}(A B)
$$

II. Constructing the LT Shadow

Even if $(\mathcal{C}, \mathbb{V})$ is not LT , we can ask what the world it describes "looks like" to local agents.

Even if $(\mathcal{C}, \mathbb{V})$ is not LT , we can ask what the world it describes "looks like" to local agents.

We need to assume that systems preferred decompositions into local pieces, so replace \mathcal{C} with its strictification \mathcal{C}^{*} :

Even if $(\mathcal{C}, \mathbb{V})$ is not LT , we can ask what the world it describes "looks like" to local agents.

We need to assume that systems preferred decompositions into local pieces, so replace \mathcal{C} with its strictification \mathcal{C}^{*} :

- objects are finite lists $\vec{A}=\left(A_{1}, \ldots, A_{n}\right)$ of objects $A_{i} \in \mathcal{C}$ ($A_{i} \neq I$) standing for

$$
\Pi \vec{A}:=\Pi_{i=1}^{n} A_{i}:=A_{1}\left(A_{2}\left(\cdots\left(A_{n-1} A_{n}\right) \cdots\right)\right.
$$

in \mathcal{C} with the indicated decomposition.

Even if $(\mathcal{C}, \mathbb{V})$ is not LT , we can ask what the world it describes "looks like" to local agents.

We need to assume that systems preferred decompositions into local pieces, so replace \mathcal{C} with its strictification \mathcal{C}^{*} :

- objects are finite lists $\vec{A}=\left(A_{1}, \ldots, A_{n}\right)$ of objects $A_{i} \in \mathcal{C}$ ($A_{i} \neq I$) standing for

$$
\Pi \vec{A}:=\prod_{i=1}^{n} A_{i}:=A_{1}\left(A_{2}\left(\cdots\left(A_{n-1} A_{n}\right) \cdots\right)\right.
$$

in \mathcal{C} with the indicated decomposition.

- Morphisms from \vec{A} to \vec{B} are morphisms $\Pi \vec{A} \rightarrow \Pi \vec{B}$ in \mathcal{C}.

Even if $(\mathcal{C}, \mathbb{V})$ is not LT , we can ask what the world it describes "looks like" to local agents.

We need to assume that systems preferred decompositions into local pieces, so replace \mathcal{C} with its strictification \mathcal{C}^{*} :

- objects are finite lists $\vec{A}=\left(A_{1}, \ldots, A_{n}\right)$ of objects $A_{i} \in \mathcal{C}$ ($A_{i} \neq I$) standing for

$$
\Pi \vec{A}:=\prod_{i=1}^{n} A_{i}:=A_{1}\left(A_{2}\left(\cdots\left(A_{n-1} A_{n}\right) \cdots\right)\right.
$$

in \mathcal{C} with the indicated decomposition.

- Morphisms from \vec{A} to \vec{B} are morphisms $\Pi \vec{A} \rightarrow \Pi \vec{B}$ in \mathcal{C}.

This is a strict symmetric monoidal category under concatenation with the empty string is the unit.

Suppose that $\vec{A}:=\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{C}^{*}$ with composite $\Pi \vec{A}:=A \in \mathcal{C}$: there's a positive linear mapping

$$
\mathrm{LT}_{\vec{A}}:=\pi_{\vec{A}}^{*}: \mathbb{V}(A) \longrightarrow \mathcal{L}^{n}\left(\mathbb{V}^{*}\left(A_{1}\right), \ldots, \mathbb{V}^{*}\left(A_{n}\right)\right)
$$

restricting $\omega \in \mathbb{V}(A)$ to product effects:

$$
\widetilde{\omega}\left(a_{1}, \ldots, a_{n}\right):=\pi_{\vec{A}}^{*}(\omega)\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1} \otimes \cdots \otimes a_{n}\right)(\omega)
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}^{*}\left(A_{1}\right) \times \cdots \times \mathbb{V}^{*}\left(A_{n}\right)$.

Suppose that $\vec{A}:=\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{C}^{*}$ with composite $\Pi \vec{A}:=A \in \mathcal{C}$: there's a positive linear mapping

$$
\mathrm{LT}_{\vec{A}}:=\pi_{\vec{A}}^{*}: \mathbb{V}(A) \longrightarrow \mathcal{L}^{n}\left(\mathbb{V}^{*}\left(A_{1}\right), \ldots, \mathbb{V}^{*}\left(A_{n}\right)\right)
$$

restricting $\omega \in \mathbb{V}(A)$ to product effects:

$$
\widetilde{\omega}\left(a_{1}, \ldots, a_{n}\right):=\pi_{\widetilde{A}}^{*}(\omega)\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1} \otimes \cdots \otimes a_{n}\right)(\omega)
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}^{*}\left(A_{1}\right) \times \cdots \times \mathbb{V}^{*}\left(A_{n}\right)$.
We call $\widetilde{\omega}$ the local shadow of ω

Let $\widetilde{\mathbb{V}}(\vec{A})$ be the space $\bigotimes_{i} \mathbb{V}\left(A_{i}\right)$, ordered by the cone

$$
\widetilde{\mathbb{V}}(\vec{A})_{+}:=\mathrm{LT} \vec{A}_{\vec{A}}\left(\mathbb{V}(\Pi A)_{+}\right)
$$

of local shadows of elements of $\mathbb{V}(\Pi \vec{A})_{+}$.
With $\widetilde{u}_{\vec{A}}=u_{A_{1}} \otimes \cdots \otimes u_{A_{n}},\left(\widetilde{\mathbb{V}}(\vec{A}), \widetilde{u}_{\vec{A}}\right)$ is a model, the locally tomographic shadow of $\left(\mathbb{V}(A), u_{A}\right)$ with respect to the given decomposition.

Notation: Write

$$
\widetilde{\mathbb{V}}(\vec{A}) \boxtimes \widetilde{\mathbb{V}}(\vec{B}):=\widetilde{\mathbb{V}}(\vec{A} \vec{B})
$$

In particular, for $A, B \in \mathcal{C}$,

$$
\mathbb{V}(A) \boxtimes \mathbb{V}(B)=\widetilde{\mathbb{V}}(A, B)=\mathbb{V}(A) \otimes \mathbb{V}(B)
$$

but ordered by the cone $\widetilde{\mathbb{V}}(A, B)$ generated by local shadows $\widetilde{\omega}$ of states $\omega \in \mathbb{V}(A B)$.

The effect cone of $\widetilde{\mathbb{V}}\left(A_{1}, \ldots, A_{n}\right)$ has a nice characterization:
Lemma: $\widetilde{\mathbb{V}}\left(A_{1}, \ldots, A_{n}\right)_{+}^{*} \simeq \mathbb{V}^{*}\left(\Pi_{i} A_{i}\right)_{+} \cap\left(\bigotimes_{i} \mathbb{V}^{*}\left(A_{i}\right)\right)$.
In the bipartite case:

$$
(\mathbb{V}(A) \boxtimes \mathbb{V}(B))_{+}^{*} \simeq \mathbb{V}(A B)_{+}^{*} \cap\left(\mathbb{V}(A)^{*} \otimes \mathbb{V}(B)^{*}\right)
$$

What about processes?
Let $A=\Pi \vec{A}$ and $B=\Pi \vec{B}$ where $\vec{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{k}\right)$. The following is routine:

Lemma: Let $\Phi: \mathbb{V}(\Pi \vec{A}) \rightarrow \mathbb{V}(\Pi \vec{B})$ be a positive linear mapping.
The following are equivalent:
(a) Φ maps $\operatorname{Ker}\left(L T_{\vec{A}}\right)$ into $\operatorname{Ker}\left(L T_{\vec{B}}\right)$.
(b) If $\omega, \omega^{\prime} \in \mathbb{V}(A)$ are locally indistinguishable, so are $\Phi(\omega), \Phi\left(\omega^{\prime}\right)$ in $\mathbb{V}(B)$.
(c) There exists a linear mapping $\phi: \bigotimes_{i} \mathbb{V}\left(A_{i}\right) \rightarrow \bigotimes_{j} \mathbb{V}\left(B_{j}\right)$ such that $L T_{\vec{B}} \circ \Phi=\phi \circ L T_{\vec{A}}$

A positive linear mapping $\Phi: \mathbb{V}(A) \rightarrow \mathbb{V}(B)$ satisfying these conditions is locally positive (with respect to the specified decompositions).

The linear mapping ϕ in part (c) is then uniquely determined. We call it the shadow of Φ, writing $\phi=\mathrm{LT}(\Phi)$.

Lemma: If $\Phi: \mathbb{V}(A) \rightarrow \mathbb{V}(B)$ is locally positive, then $\phi=L T(\Phi)$ is positive as a mapping $\widetilde{\mathbb{V}}\left(A_{1}, \ldots, A_{m}\right) \rightarrow \widetilde{\mathbb{V}}\left(B_{1}, \ldots, B_{n}\right)$.

Locally positive maps are reasonably abundant, but do exclude some important morphisms in $\mathbb{R} \mathbf{Q M}$.

Examples:

(a) If σ and α are swap and associator morphisms in $\mathcal{C}, \mathbb{V}(\sigma)$ is locally positive, but $\mathbb{V}(\alpha)$ need not be.
(b) if α is a state on $A=A_{1} \otimes \cdots \otimes A_{n}$, then the corresponding mapping $\alpha: \mathbb{R}=\mathbb{V}(I) \rightarrow \mathbb{V}(A)$ given by $\alpha(1)=\alpha$ is trivially locally positive (the kernel of LT , is trivial). But an effect $a: \mathbb{V}(A) \rightarrow \mathbb{R}$ need not be locally positive.

Call a morphism $\Pi \vec{A} \xrightarrow{\phi} \Pi \vec{B}$ local iff $\mathbb{V}(\phi): \mathbb{V}(\Pi \vec{A}) \rightarrow \mathbb{V}(\Pi \vec{B})$ is locally positive (relative to the preferred factorizations of A and B).

Write $\operatorname{Loc}(\mathcal{C}, \mathbb{V})$ for the monoidal subcategory (it is one) of \mathcal{C}^{*} having the same objects but only local morphisms.

Lemma: $\widetilde{\mathbb{V}}: \operatorname{Loc}(\mathcal{C}, \mathbb{V}) \rightarrow$ Prob is a locally tomographic probabilistic theory - the locally tomographic shadow of \mathbb{V}.

IV. The Shadow of Real Quantum Theory

For simplicity, let $\mathbf{H}=\mathbf{K}$, writing \mathcal{L}_{s} for $\mathcal{L}_{s}(\mathbf{H})$. Recall

$$
\mathcal{L}_{s}(\mathbf{H} \otimes \mathbf{H})=\mathcal{L}_{s s} \oplus \mathcal{L}_{a a},
$$

where

$$
\mathcal{L}_{s s}=\mathcal{L}_{s}(\mathbf{H}) \otimes \mathcal{L}_{s}(\mathbf{K}) \text { and } \mathcal{L}_{a a}=\mathcal{L}_{a}(\mathbf{H}) \otimes \mathcal{L}_{a}(\mathbf{K}) .
$$

Then LT is just the projection onto $\mathcal{L}_{\text {ss. }}$. This is just Sym \otimes Sym, where

$$
\operatorname{Sym}(a):=\frac{1}{2}\left(a+a^{t}\right) .
$$

But Sym \otimes Sym is not positive!

So $\left(\mathcal{L}_{s} \boxtimes \mathcal{L}_{s}\right)_{+}$is strictly larger than $\mathcal{L}_{s s} \cap \mathcal{L}_{+}$.
A priori we have now have

$$
\left(\mathcal{L}_{s} \otimes_{\min } \mathcal{L}_{s}\right)_{+} \leq \mathcal{L}_{s s} \cap \mathcal{L}_{+}<\left(\mathcal{L}_{s} \boxtimes \mathcal{L}_{s}\right)_{+} \leq\left(\mathcal{L}_{s} \otimes_{\max } \mathcal{L}_{s}\right)_{+}
$$

In fact,
Theorem: All of these embeddings are strict.
(The hard one is the last. Uses the existence of unextendable product bases.)

The geometry of the state space in $\mathrm{LT}(\mathbb{R} \mathbf{Q M})$ is nontrivial. The following restates a result of Chiribella, D'Ariano and Perinotti (2009):

Theorem: If α, β are states density operators on $\mathbf{H} \otimes \mathbf{K}$ with α pure, then

$$
L T(\alpha)=L T(\beta) \Rightarrow \alpha=\beta
$$

So the the LT map never identifies a pure state with any other state. Only nontrivially mixed states get "pasted togther".

IV. Conclusions and questions

Compact Closure The effect $\epsilon: a \otimes b \mapsto \operatorname{Tr}\left(a b^{t}\right)$ is not local. Hence, $\operatorname{LT}(\mathbb{R} \mathbf{Q M})$ does not inherit the compact structure of $\mathbb{R} \mathbf{Q M}$. If \mathcal{C} is compact closed, when is $\operatorname{LT}(\mathcal{C}, \mathbb{V})$ compact closed?

LT and Complex QM How does LT interact with the restriction-of-scalars and complexification functors $(-)_{\mathbb{R}}: \mathbb{C Q M} \rightarrow \mathbb{R} \mathbf{Q M},(-)^{\mathbb{C}}: \mathbb{R} \mathbf{Q M} \rightarrow \mathbb{C Q M}$?

The Shadow of InvQM In (BGW, Quantum 2020), we constructed a non-LT theory InvQM, containing finite-dimensional real and quaternionic QM and also a relative of complex QM . What is LT(InvQM)?

Non-deterministic shadows Not all processes in $\mathbb{R} \mathbf{Q M}$ are local. Suppose Alice and Bob agree that their joint state is ω. This is consistent with the true global state being any $\mu \in \mathrm{LT}_{A, B}^{-1}(\omega)$. If μ evolves under a (global) process $\phi: \mathbb{V}(A B) \rightarrow \mathbb{V}(C D)$, the result will be one of the states in $\phi\left(\mathrm{LT}_{A, B}^{-1}(\omega)\right)$. If ϕ is not local, these needn't lie in a single fibre of $L T_{C, D}$: parties C and D might observe any of the different states in $\mathrm{LT}_{C, D}\left(\phi\left(\mathrm{LT}_{A, B}^{-1}(\omega)\right)\right)$, giving the impression that ϕ acted indeterministically. How should one quantify this extra layer of uncertainty?

